Search results
Results from the WOW.Com Content Network
List of free analog and digital electronic circuit simulators, available for Windows, macOS, Linux, and comparing against UC Berkeley SPICE.The following table is split into two groups based on whether it has a graphical visual interface or not.
An example of a solenoidal vector field, (,) = (,) In vector calculus a solenoidal vector field (also known as an incompressible vector field, a divergence-free vector field, or a transverse vector field) is a vector field v with divergence zero at all points in the field: =
D: divergence, C: curl, G: gradient, L: Laplacian, CC: curl of curl. Each arrow is labeled with the result of an identity, specifically, the result of applying the operator at the arrow's tail to the operator at its head. The blue circle in the middle means curl of curl exists, whereas the other two red circles (dashed) mean that DD and GG do ...
NuCalc, also known as Graphing Calculator, is a computer software tool made by Pacific Tech. It can graph inequalities and vector fields, and functions in two, three, or four dimensions. It supports several different coordinate systems, and can solve equations. It runs on OS X as Graphing Calculator, and on Windows.
This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): The polar angle is denoted by θ ∈ [ 0 , π ] {\displaystyle \theta \in [0,\pi ]} : it is the angle between the z -axis and the radial vector connecting the origin to the point in ...
Genius (also known as the Genius Math Tool) is a free open-source numerical computing environment and programming language, [2] similar in some aspects to MATLAB, GNU Octave, Mathematica and Maple. Genius is aimed at mathematical experimentation rather than computationally intensive tasks. It is also very useful as just a calculator.
In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.
Mathematical expressions involving these quantities in vector calculus and tensor analysis (such as the gradient, divergence, curl, and Laplacian) can be transformed from one coordinate system to another, according to transformation rules for scalars, vectors, and tensors. Such expressions then become valid for any curvilinear coordinate system.