Search results
Results from the WOW.Com Content Network
Most cryptographic hash functions are designed to take a string of any length as input and produce a fixed-length hash value. A cryptographic hash function must be able to withstand all known types of cryptanalytic attack. In theoretical cryptography, the security level of a cryptographic hash function has been defined using the following ...
HAIFA structure, [17] extendable-output functions (XOFs) design [18] BLAKE3: arbitrary Merkle tree: ECOH: 224 to 512 bits hash FSB: 160 to 512 bits hash GOST: 256 bits hash Grøstl: up to 512 bits hash HAS-160: 160 bits hash HAVAL: 128 to 256 bits hash JH: 224 to 512 bits hash LSH [19] 256 to 512 bits wide-pipe Merkle–Damgård construction ...
Extendable-output function (XOF) is an extension [1] of the cryptographic hash that allows its output to be arbitrarily long. In particular, the sponge construction makes any sponge hash a natural XOF: the squeeze operation can be repeated, and the regular hash functions with a fixed-size result are obtained from a sponge mechanism by stopping the squeezing phase after obtaining the fixed ...
The output is a hash code used to index a hash table holding the data or records, or pointers to them. A hash function may be considered to perform three functions: Convert variable-length keys into fixed-length (usually machine-word -length or less) values, by folding them by words or other units using a parity-preserving operator like ADD or XOR,
In cryptography, the avalanche effect is the desirable property of cryptographic algorithms, typically block ciphers [1] and cryptographic hash functions, wherein if an input is changed slightly (for example, flipping a single bit), the output changes significantly (e.g., half the output bits flip).
The Secure Hash Algorithms are a family of cryptographic hash functions published by the National Institute of Standards and Technology (NIST) as a U.S. Federal Information Processing Standard (FIPS), including: SHA-0: A retronym applied to the original version of the 160-bit hash function published in 1993 under the name "SHA". It was ...
BLAKE is a cryptographic hash function based on Daniel J. Bernstein's ChaCha stream cipher, but a permuted copy of the input block, XORed with round constants, is added before each ChaCha round. Like SHA-2, there are two variants differing in the word size. ChaCha operates on a 4×4 array of words.
The MD5 message-digest algorithm is a widely used hash function producing a 128-bit hash value. MD5 was designed by Ronald Rivest in 1991 to replace an earlier hash function MD4, [3] and was specified in 1992 as RFC 1321. MD5 can be used as a checksum to verify data integrity against unintentional corruption.