enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Long_short-term_memory

    Long short-term memory (LSTM) [1] is a type of recurrent neural network (RNN) aimed at mitigating the vanishing gradient problem [2] commonly encountered by traditional RNNs. Its relative insensitivity to gap length is its advantage over other RNNs, hidden Markov models , and other sequence learning methods.

  3. Jürgen Schmidhuber - Wikipedia

    en.wikipedia.org/wiki/Jürgen_Schmidhuber

    The standard LSTM architecture was introduced in 2000 by Felix Gers, Schmidhuber, and Fred Cummins. [20] Today's "vanilla LSTM" using backpropagation through time was published with his student Alex Graves in 2005, [21] [22] and its connectionist temporal classification (CTC) training algorithm [23] in 2006. CTC was applied to end-to-end speech ...

  4. Time aware long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Time_aware_long_short-term...

    Time Aware LSTM (T-LSTM) is a long short-term memory (LSTM) unit capable of handling irregular time intervals in longitudinal patient records. T-LSTM was developed by researchers from Michigan State University, IBM Research, and Cornell University and was first presented in the Knowledge Discovery and Data Mining (KDD) conference. [1]

  5. Sepp Hochreiter - Wikipedia

    en.wikipedia.org/wiki/Sepp_Hochreiter

    Hochreiter developed the long short-term memory (LSTM) neural network architecture in his diploma thesis in 1991 leading to the main publication in 1997. [3] [4] LSTM overcomes the problem of numerical instability in training recurrent neural networks (RNNs) that prevents them from learning from long sequences (vanishing or exploding gradient).

  6. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    A key breakthrough was LSTM (1995), [note 1] a RNN which used various innovations to overcome the vanishing gradient problem, allowing efficient learning of long-sequence modelling. One key innovation was the use of an attention mechanism which used neurons that multiply the outputs of other neurons, so-called multiplicative units . [ 13 ]

  7. Connectionist temporal classification - Wikipedia

    en.wikipedia.org/wiki/Connectionist_temporal...

    Connectionist temporal classification (CTC) is a type of neural network output and associated scoring function, for training recurrent neural networks (RNNs) such as LSTM networks to tackle sequence problems where the timing is variable. It can be used for tasks like on-line handwriting recognition [1] or recognizing phonemes in speech audio ...

  8. ELMo - Wikipedia

    en.wikipedia.org/wiki/ELMo

    It was created by researchers at the Allen Institute for Artificial Intelligence, [2] and University of Washington and first released in February, 2018. It is a bidirectional LSTM which takes character-level as inputs and produces word-level embeddings, trained on a corpus of about 30 million sentences and 1 billion words.

  9. Nicholas Raymond Cerio - Wikipedia

    en.wikipedia.org/wiki/Nicholas_Raymond_Cerio

    Nick Cerio's Kenpo, Library of Congress catalog card no. TX 1-401-371, 1984, second printing 1998 ; Klouvatos, George. "Nick Cerio's Kenpo The Man and His Style" Oriental Fighting Arts, April 1975: 24–31; Breen, Andrew. "Professor Nick Cerio, Evolution Of A Kenpo Master" Inside Kung Fu, July 1997: 40–45, 102–103; Liedke, Bob.