Search results
Results from the WOW.Com Content Network
For example, adding 25 16 and 48 16 produces 6D 16. However, for binary-coded decimal (BCD) values, where each 4-bit nibble represents a decimal digit, addition is more complicated. For example, adding the decimal value 25 and 48, which are encoded as the BCD values 25 16 and 48 16, the binary addition of the two values produces 6D 16. Since ...
The Intel 8085 ("eighty-eighty-five") is an 8-bit microprocessor produced by Intel and introduced in March 1976. [2] It is the last 8-bit microprocessor developed by Intel. It is software-binary compatible with the more-famous Intel 8080 with only two minor instructions added to support its added interrupt and serial input/output features.
The reset vector for 6502 processor family is a 16-bit address stored at 0xFFFC and 0xFFFD. The reset vector for 6800 and 6809 processor families is a 16-bit address stored at 0xFFFE and 0xFFFF. No Reset Vector. For 8051 / 8080 / 8085 / Z80, reset starts code execution at address 0x0000.
Will change OperandSize from 16-bit to 32-bit if CS.D=0, or from 32-bit to 16-bit if CS.D=1. 67h: AddressSize override. Will change AddressSize from 16-bit to 32-bit if CS.D=0, or from 32-bit to 16-bit if CS.D=1. The 80386 also introduced the two new segment registers FS and GS as well as the x86 control, debug and test registers.
The valid 9-bit result is the concatenation of the carry flag with the result. For x86 ALU size of 8 bits, an 8-bit two's complement interpretation, the addition operation 11111111 + 11111111 results in 111111110, Carry_Flag set, Sign_Flag set, and Overflow_Flag clear.
Similarly, instructions for 16-bit additions are not particularly fast (11 clocks) in the original Z80 (being 1 clock slower than in the 8080/8085); nonetheless, they are about twice as fast as performing the same calculations using 8-bit operations, and equally important, they reduce register usage.
The FLAGS register is the status register that contains the current state of an x86 CPU.The size and meanings of the flag bits are architecture dependent. It usually reflects the result of arithmetic operations as well as information about restrictions placed on the CPU operation at the current time.
By combining multiple carry-lookahead adders, even larger adders can be created. This can be used at multiple levels to make even larger adders. For example, the following adder is a 64-bit adder that uses four 16-bit CLAs with two levels of lookahead carry units.