Search results
Results from the WOW.Com Content Network
Neuroplasticity, also known as neural plasticity or just plasticity, is the ability of neural networks in the brain to change through growth and reorganization. . Neuroplasticity refers to the brain's ability to reorganize and rewire its neural connections, enabling it to adapt and function in ways that differ from
Neuroplasticity is the process by which neurons adapt to a disturbance over time, and most often occurs in response to repeated exposure to stimuli. [27] Aerobic exercise increases the production of neurotrophic factors [note 1] (e.g., BDNF, IGF-1, VEGF) which mediate improvements in cognitive functions and various forms of memory by promoting blood vessel formation in the brain, adult ...
Activity-dependent plasticity is a form of functional and structural neuroplasticity that arises from the use of cognitive functions and personal experience. [1] Hence, it is the biological basis for learning and the formation of new memories.
For example, in certain neurodegenerative conditions, such as Alzheimer's disease, abnormal sprouting of neurons may contribute to the spread of the disease and further neuronal death. Therefore, while neural sprouting is an important form of neuroplasticity , it is a complex process that can have both positive and negative effects, depending ...
The hippocampus regulates memory function. Memory improvement is the act of enhancing one's memory. Factors motivating research on improving memory include conditions such as amnesia, age-related memory loss, people’s desire to enhance their memory, and the search to determine factors that impact memory and cognition.
Synaptic plasticity rule for gradient estimation by dynamic perturbation of conductances. In neuroscience, synaptic plasticity is the ability of synapses to strengthen or weaken over time, in response to increases or decreases in their activity. [1]
In neuroscience, homeostatic plasticity refers to the capacity of neurons to regulate their own excitability relative to network activity. The term homeostatic plasticity derives from two opposing concepts: 'homeostatic' (a product of the Greek words for 'same' and 'state' or 'condition') and plasticity (or 'change'), thus homeostatic plasticity means "staying the same through change".
Some of the most pervading examples of this can be seen through the development of the visual cortex in addition to the acquisition of language as a result of developmental plasticity during the critical period. [8] [32] A lesser known example, however, remains the critical development of respiratory control during developmental periods. At ...