Search results
Results from the WOW.Com Content Network
In mathematics, the capacity of a set in Euclidean space is a measure of the "size" of that set. Unlike, say, Lebesgue measure , which measures a set's volume or physical extent, capacity is a mathematical analogue of a set's ability to hold electrical charge .
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
Semantically, in a metalanguage, the classes can be described as equivalence classes of logical formulas: If is a structure interpreting ZF, then the object language "class-builder expression" {} is interpreted in by the collection of all the elements from the domain of on which holds; thus, the class can be described as the set of all ...
Set theory begins with a fundamental binary relation between an object o and a set A. If o is a member (or element) of A, the notation o ∈ A is used. A set is described by listing elements separated by commas, or by a characterizing property of its elements, within braces { }. [8]
The set of all vectors of norm less than one is called the unit ball of a normed space. It is a convex, centrally symmetric set, generally not an ellipsoid; for example, it may be a polygon (in the plane) or, more generally, a polytope (in arbitrary finite dimension). The parallelogram law (called also parallelogram identity)
Capacity of a set, in Euclidean space, the total charge a set can hold while maintaining a given potential energy; Capacity factor, the ratio of the actual output of a power plant to its theoretical potential output; Storage capacity (energy), the amount of energy that the storage system of a power plant can hold
Many important categories in mathematics (such as the category of sets), although not small, are at least locally small. Since, in small categories, the objects form a set, a small category can be viewed as an algebraic structure similar to a monoid but without requiring closure properties. Large categories on the other hand can be used to ...
The empty set is the unique initial object in Set, the category of sets.Every one-element set is a terminal object in this category; there are no zero objects.. Similarly, the empty space is the unique initial object in Top, the category of topological spaces and every one-point space is a terminal object in thi