Search results
Results from the WOW.Com Content Network
A fundamental tool in robot kinematics is the kinematics equations of the kinematic chains that form the robot. These non-linear equations are used to map the joint parameters to the configuration of the robot system. Kinematics equations are also used in biomechanics of the skeleton and computer animation of articulated characters.
Robotics engineering is a branch of engineering that focuses on the conception, design, manufacturing, and operation of robots.It involves a multidisciplinary approach, drawing primarily from mechanical, electrical, software, and artificial intelligence (AI) engineering.
In robot kinematics, forward kinematics refers to the use of the kinematic equations of a robot to compute the position of the end-effector from specified values for the joint parameters. [ 1 ] The kinematics equations of the robot are used in robotics , computer games , and animation .
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
The constraint equations of a kinematic chain can be used in reverse to determine the dimensions of the links from a specification of the desired movement of the system. This is termed kinematic synthesis. [7] Perhaps the most developed formulation of kinematic synthesis is for four-bar linkages, which is known as Burmester theory. [8] [9] [10]
Forward vs. inverse kinematics. In computer animation and robotics, inverse kinematics is the mathematical process of calculating the variable joint parameters needed to place the end of a kinematic chain, such as a robot manipulator or animation character's skeleton, in a given position and orientation relative to the start of the chain.
The following outline is provided as an overview of and topical guide to robotics: . Robotics is a branch of mechanical engineering, electrical engineering and computer science that deals with the design, construction, operation, and application of robots, as well as computer systems for their control, sensory feedback, and information processing.
Often Level-1 and Level-2 calibration are sufficient for most practical needs. [1] [2] Parametric robot calibration is the process of determining the actual values of kinematic and dynamic parameters of an industrial robot (IR). Kinematic parameters describe the relative position and orientation of links and joints in the robot while the ...