Ads
related to: solving systems of inequalities worksheets
Search results
Results from the WOW.Com Content Network
Systems of linear inequalities can be simplified by Fourier–Motzkin elimination. [ 17 ] The cylindrical algebraic decomposition is an algorithm that allows testing whether a system of polynomial equations and inequalities has solutions, and, if solutions exist, describing them.
However, the elimination process results in a new system that possibly contains more inequalities than the original. Yet, often some of the inequalities in the reduced system are redundant. Redundancy may be implied by other inequalities or by inequalities in information theory (a.k.a. Shannon type inequalities).
Two-dimensional linear inequalities are expressions in two variables of the form: + < +, where the inequalities may either be strict or not. The solution set of such an inequality can be graphically represented by a half-plane (all the points on one "side" of a fixed line) in the Euclidean plane. [2]
Relaxation methods were developed for solving large sparse linear systems, which arose as finite-difference discretizations of differential equations. [2] [3] They are also used for the solution of linear equations for linear least-squares problems [4] and also for systems of linear inequalities, such as those arising in linear programming.
Two linear systems using the same set of variables are equivalent if each of the equations in the second system can be derived algebraically from the equations in the first system, and vice versa. Two systems are equivalent if either both are inconsistent or each equation of each of them is a linear combination of the equations of the other one.
Consider the system of linear equations: L i = 0 for 1 ≤ i ≤ M, and variables X 1, X 2, ..., X N, where each L i is a weighted sum of the X i s. Then X 1 = X 2 = ⋯ = X N = 0 is always a solution. When M < N the system is underdetermined and there are always an infinitude of further solutions.
Following Antman (1983, p. 283), the definition of a variational inequality is the following one.. Given a Banach space, a subset of , and a functional : from to the dual space of the space , the variational inequality problem is the problem of solving for the variable belonging to the following inequality:
For getting an algorithm that can be implemented and can solve systems of polynomial equations and inequalities, George Collins introduced the cylindrical algebraic decomposition that became a fundamental tool in real algebraic geometry. [123]
Ads
related to: solving systems of inequalities worksheets