enow.com Web Search

  1. Ads

    related to: dedekind finite examples of linear algebra problems worksheets

Search results

  1. Results from the WOW.Com Content Network
  2. Dedekind–MacNeille completion - Wikipedia

    en.wikipedia.org/wiki/Dedekind–MacNeille...

    When S is finite, its completion is also finite, and has the smallest number of elements among all finite complete lattices containing S. [ 12 ] The partially ordered set S is join-dense and meet-dense in the Dedekind–MacNeille completion; that is, every element of the completion is a join of some set of elements of S , and is also the meet ...

  3. Dedekind domain - Wikipedia

    en.wikipedia.org/wiki/Dedekind_domain

    A Dedekind domain can also be characterized in terms of homological algebra: an integral domain is a Dedekind domain if and only if it is a hereditary ring; that is, every submodule of a projective module over it is projective. Similarly, an integral domain is a Dedekind domain if and only if every divisible module over it is injective. [3]

  4. Dedekind-infinite set - Wikipedia

    en.wikipedia.org/wiki/Dedekind-infinite_set

    A set is Dedekind-finite if it is not Dedekind-infinite (i.e., no such bijection exists). Proposed by Dedekind in 1888, Dedekind-infiniteness was the first definition of "infinite" that did not rely on the definition of the natural numbers. [1] A simple example is , the set of natural numbers.

  5. Excellent ring - Wikipedia

    en.wikipedia.org/wiki/Excellent_ring

    The definition of excellent rings is quite involved, so we recall the definitions of the technical conditions it satisfies. Although it seems like a long list of conditions, most rings in practice are excellent, such as fields, polynomial rings, complete Noetherian rings, Dedekind domains over characteristic 0 (such as ), and quotient and localization rings of these rings.

  6. Prüfer domain - Wikipedia

    en.wikipedia.org/wiki/Prüfer_domain

    In mathematics, a Prüfer domain is a type of commutative ring that generalizes Dedekind domains in a non-Noetherian context. These rings possess the nice ideal and module theoretic properties of Dedekind domains, but usually only for finitely generated modules. Prüfer domains are named after the German mathematician Heinz Prüfer.

  7. Arithmetic surface - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_surface

    In more detail, an arithmetic surface (over the Dedekind domain ) is a scheme with a morphism: with the following properties: is integral, normal, excellent, flat and of finite type over and the generic fiber is a non-singular, connected projective curve over () and for other in (),

  1. Ads

    related to: dedekind finite examples of linear algebra problems worksheets