enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Point–line–plane postulate - Wikipedia

    en.wikipedia.org/wiki/Pointlineplane_postulate

    The following are the assumptions of the point-line-plane postulate: [1] Unique line assumption. There is exactly one line passing through two distinct points. Number line assumption. Every line is a set of points which can be put into a one-to-one correspondence with the real numbers. Any point can correspond with 0 (zero) and any other point ...

  3. Plane (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Plane_(mathematics)

    A plane is the two-dimensional analogue of a point (zero dimensions), a line (one dimension) and three-dimensional space. When working exclusively in two-dimensional Euclidean space, the definite article is used, so the Euclidean plane refers to the whole space. Several notions of a plane may be defined.

  4. Projective geometry - Wikipedia

    en.wikipedia.org/wiki/Projective_geometry

    (L2) at least dimension 1 if it has at least 2 distinct points (and therefore a line), (L3) at least dimension 2 if it has at least 3 non-collinear points (or two lines, or a line and a point not on the line), (L4) at least dimension 3 if it has at least 4 non-coplanar points. The maximum dimension may also be determined in a similar fashion.

  5. Birkhoff's axioms - Wikipedia

    en.wikipedia.org/wiki/Birkhoff's_axioms

    In 1932, G. D. Birkhoff created a set of four postulates of Euclidean geometry in the plane, sometimes referred to as Birkhoff's axioms. [1] These postulates are all based on basic geometry that can be confirmed experimentally with a scale and protractor. Since the postulates build upon the real numbers, the approach is similar to a model ...

  6. Duality (projective geometry) - Wikipedia

    en.wikipedia.org/wiki/Duality_(projective_geometry)

    Duality (projective geometry) In projective geometry, duality or plane duality is a formalization of the striking symmetry of the roles played by points and lines in the definitions and theorems of projective planes. There are two approaches to the subject of duality, one through language (§ Principle of duality) and the other a more ...

  7. Scaling (geometry) - Wikipedia

    en.wikipedia.org/wiki/Scaling_(geometry)

    In affine geometry, uniform scaling (or isotropic scaling[1]) is a linear transformation that enlarges (increases) or shrinks (diminishes) objects by a scale factor that is the same in all directions (isotropically). The result of uniform scaling is similar (in the geometric sense) to the original. A scale factor of 1 is normally allowed, so ...

  8. Projective space - Wikipedia

    en.wikipedia.org/wiki/Projective_space

    Dimension 0 (no lines): The space is a single point. Dimension 1 (exactly one line): All points lie on the unique line. Dimension 2: There are at least 2 lines, and any two lines meet. A projective space for n = 2 is equivalent to a projective plane. These are much harder to classify, as not all of them are isomorphic with a PG(d, K).

  9. Euclidean planes in three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_planes_in_three...

    The three possible plane-line relationships in three dimensions. (Shown in each case is only a portion of the plane, which extends infinitely far.) In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is ...