Search results
Results from the WOW.Com Content Network
Sclerenchyma is the tissue which makes the plant hard and stiff. Sclerenchyma is the supporting tissue in plants. Two types of sclerenchyma cells exist: fibers cellular and sclereids. Their cell walls consist of cellulose, hemicellulose, and lignin. Sclerenchyma cells are the principal supporting cells in plant tissues that have ceased elongation.
The loosely packed cells of root cortex allow movement of water and oxygen in the intercellular spaces. [4] One of the main functions of the root cortex is to serve as a storage area for reserve foods. [4] The innermost layer of the cortex in the roots of vascular plants is the endodermis. The endodermis is responsible for storing starch as ...
A storage organ is a part of a plant specifically modified for storage of energy (generally in the form of carbohydrates) or water. [1] Storage organs often grow underground, where they are better protected from attack by herbivores. Plants that have an underground storage organ are called geophytes in the Raunkiær plant life-form ...
Ground tissue is important in aiding metabolic activities (eg. respiration, photosynthesis, transport, storage) as well as acting as structural support and forming new meristems. [7] Most or all ground tissue may be lost in woody stems. Vascular tissue, consisting of xylem, phloem and cambium; provides long distance transport of water, minerals ...
The epidermis is the outermost cell layer of the primary plant body. In some older works the cells of the leaf epidermis have been regarded as specialized parenchyma cells, [1] but the established modern preference has long been to classify the epidermis as dermal tissue, [2] whereas parenchyma is classified as ground tissue. [3]
In most seed plants, especially woody types, the endodermis is present in roots but not in stems. The endodermis helps regulate the movement of water, ions and hormones into and out of the vascular system. It may also store starch, be involved in perception of gravity and protect the plant against toxins moving into the vascular system.
The primary force that creates the capillary action movement of water upwards in plants is the adhesion between the water and the surface of the xylem conduits. [14] [15] Capillary action provides the force that establishes an equilibrium configuration, balancing gravity. When transpiration removes water at the top, the flow is needed to return ...
The inclusion of lignin makes the secondary cell wall less flexible and less permeable to water than the primary cell wall. [4] In addition to making the walls more resistant to degradation, the hydrophobic nature of lignin within these tissues is essential for containing water within the vascular tissues that carry it throughout the plant.