Search results
Results from the WOW.Com Content Network
A scale factor is usually a decimal which scales, or multiplies, some quantity. In the equation y = Cx, C is the scale factor for x. C is also the coefficient of x, and may be called the constant of proportionality of y to x. For example, doubling distances corresponds to a scale factor of two for distance, while cutting a cake in half results ...
In the two-dimensional Euclidean plane, Joseph Louis Lagrange proved in 1773 that the highest-density lattice packing of circles is the hexagonal packing arrangement, [1] in which the centres of the circles are arranged in a hexagonal lattice (staggered rows, like a honeycomb), and each circle is surrounded by six other circles.
In physics, a characteristic length is an important dimension that defines the scale of a physical system. Often, such a length is used as an input to a formula in order to predict some characteristics of the system, and it is usually required by the construction of a dimensionless quantity, in the general framework of dimensional analysis and in particular applications such as fluid mechanics.
The quotient is called the scale factor. Unless the projection is conformal at the point being considered, the scale factor varies by direction around the point. A map distorts angles wherever the angles measured on the model of the Earth are not conserved in the projection. This is expressed by an ellipse of distortion which is not a circle.
A plane segment or planar region (or simply "plane", in lay use) is a planar surface region; it is analogous to a line segment. A bivector is an oriented plane segment, analogous to directed line segments. [a] A face is a plane segment bounding a solid object. [1] A slab is a region bounded by two parallel planes.
The general solution : to Laplace's equation = in a ball centered at the origin is a linear combination of the spherical harmonic functions multiplied by the appropriate scale factor r ℓ, f ( r , θ , φ ) = ∑ ℓ = 0 ∞ ∑ m = − ℓ ℓ f ℓ m r ℓ Y ℓ m ( θ , φ ) , {\displaystyle f(r,\theta ,\varphi )=\sum _{\ell =0}^{\infty ...
For = the plane section is a circle, for = a parabola. (The plane must not meet the vertex of the cone.) (The plane must not meet the vertex of the cone.) The linear eccentricity of an ellipse or hyperbola, denoted c (or sometimes f or e ), is the distance between its center and either of its two foci .
The formula for the surface area of a sphere was first obtained by Archimedes in his work On the Sphere and Cylinder. The formula is: [6] A = 4πr 2 (sphere), where r is the radius of the sphere. As with the formula for the area of a circle, any derivation of this formula inherently uses methods similar to calculus.