Search results
Results from the WOW.Com Content Network
For example, 13 0 0 has three significant figures (and hence indicates that the number is precise to the nearest ten). Less often, using a closely related convention, the last significant figure of a number may be underlined; for example, "1 3 00" has two significant figures. A decimal point may be placed after the number; for example "1300."
All of the significant digits remain, but the placeholding zeroes are no longer required. Thus 1 230 400 would become 1.2304 × 10 6 if it had five significant digits. If the number were known to six or seven significant figures, it would be shown as 1.230 40 × 10 6 or 1.230 400 × 10 6. Thus, an additional advantage of scientific notation is ...
Under these circumstances, all the significant figures go into expressing b. For example, if the precision is 15 figures, and these two numbers, b and the square root, are the same to 15 figures, the difference will be zero instead of the difference ε. A better accuracy can be obtained from a different approach, outlined below.
A standardized way of writing very large numbers allows them to be easily sorted in increasing order, and one can get a good idea of how much larger a number is than another one. To compare numbers in scientific notation, say 5×10 4 and 2×10 5, compare the exponents first, in this case 5 > 4, so 2×10 5 > 5×10 4.
Engineering notation or engineering form (also technical notation) is a version of scientific notation in which the exponent of ten is always selected to be divisible by three to match the common metric prefixes, i.e. scientific notation that aligns with powers of a thousand, for example, 531×10 3 instead of 5.31×10 5 (but on calculator displays written without the ×10 to save space).
As a power of ten, the scaling factor is then indicated separately at the end of the number. For example, the orbital period of Jupiter's moon Io is 152,853.5047 seconds, a value that would be represented in standard-form scientific notation as 1.528535047 × 10 5 seconds. Floating-point representation is similar in concept to scientific notation.
False precision (also called overprecision, fake precision, misplaced precision and spurious precision) occurs when numerical data are presented in a manner that implies better precision than is justified; since precision is a limit to accuracy (in the ISO definition of accuracy), this often leads to overconfidence in the accuracy, named precision bias.
For example, in pharmacy, trailing zeros are omitted from dose values to prevent misreading. However, trailing zeros may be useful for indicating the number of significant figures, for example in a measurement. In such a context, "simplifying" a number by removing trailing zeros would be incorrect.