enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Discrete-time Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete-time_Fourier...

    In mathematics, the discrete-time Fourier transform (DTFT) is a form of Fourier analysis that is applicable to a sequence of discrete values. The DTFT is often used to analyze samples of a continuous function. The term discrete-time refers to the fact that the transform operates on discrete data, often samples whose interval has units of time.

  3. Signal - Wikipedia

    en.wikipedia.org/wiki/Signal

    Signals can be classified as continuous or discrete time. In the mathematical abstraction, the domain of a continuous-time signal is the set of real numbers (or some interval thereof), whereas the domain of a discrete-time (DT) signal is the set of integers (or other subsets of real numbers). What these integers represent depends on the nature ...

  4. Z-transform - Wikipedia

    en.wikipedia.org/wiki/Z-transform

    In signal processing, this definition can be used to evaluate the Z-transform of the unit impulse response of a discrete-time causal system.. An important example of the unilateral Z-transform is the probability-generating function, where the component [] is the probability that a discrete random variable takes the value.

  5. Discrete Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform

    In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration ...

  6. Nyquist–Shannon sampling theorem - Wikipedia

    en.wikipedia.org/wiki/Nyquist–Shannon_sampling...

    The Nyquist–Shannon sampling theorem is a theorem in the field of signal processing which serves as a fundamental bridge between continuous-time signals and discrete-time signals. It establishes a sufficient condition for a sample rate that permits a discrete sequence of samples to capture all the information from a continuous-time signal of ...

  7. Digital signal - Wikipedia

    en.wikipedia.org/wiki/Digital_signal

    A digital signal is an abstraction that is discrete in time and amplitude. The signal's value only exists at regular time intervals, since only the values of the corresponding physical signal at those sampled moments are significant for further digital processing. The digital signal is a sequence of codes drawn from a finite set of values. [10]

  8. Frequency domain - Wikipedia

    en.wikipedia.org/wiki/Frequency_domain

    The discrete-time Fourier transform, on the other hand, maps functions with discrete time (discrete-time signals) to functions that have a continuous frequency domain. [2] [3] A periodic signal has energy only at a base frequency and its harmonics; thus it can be analyzed using a discrete frequency domain. A discrete-time signal gives rise to a ...

  9. Transfer function - Wikipedia

    en.wikipedia.org/wiki/Transfer_function

    hide. In engineering, a transfer function (also known as system function[ 1 ] or network function) of a system, sub-system, or component is a mathematical function that models the system's output for each possible input. [ 2 ][ 3 ][ 4 ] It is widely used in electronic engineering tools like circuit simulators and control systems.