enow.com Web Search

  1. Ad

    related to: geometry lines rays segments

Search results

  1. Results from the WOW.Com Content Network
  2. Arrangement of lines - Wikipedia

    en.wikipedia.org/wiki/Arrangement_of_lines

    In geometry, an arrangement of lines is the subdivision of the Euclidean plane formed by a finite set of lines. An arrangement consists of bounded and unbounded convex polygons, the cells of the arrangement, line segments and rays, the edges of the arrangement, and points where two or more lines cross, the vertices of the arrangement.

  3. Line (geometry) - Wikipedia

    en.wikipedia.org/wiki/Line_(geometry)

    In Euclidean geometry two rays with a common endpoint form an angle. [14] The definition of a ray depends upon the notion of betweenness for points on a line. It follows that rays exist only for geometries for which this notion exists, typically Euclidean geometry or affine geometry over an ordered field.

  4. Direction (geometry) - Wikipedia

    en.wikipedia.org/wiki/Direction_(geometry)

    Three line segments with the same direction. In geometry, direction, also known as spatial direction or vector direction, is the common characteristic of all rays which coincide when translated to share a common endpoint; equivalently, it is the common characteristic of vectors (such as the relative position between a pair of points) which can be made equal by scaling (by some positive scalar ...

  5. Line segment - Wikipedia

    en.wikipedia.org/wiki/Line_segment

    Analogous to straight line segments above, one can also define arcs as segments of a curve. In one-dimensional space, a ball is a line segment. An oriented plane segment or bivector generalizes the directed line segment. Beyond Euclidean geometry, geodesic segments play the role of line segments.

  6. Vertex (geometry) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(geometry)

    A vertex of an angle is the endpoint where two lines or rays come together. In geometry, a vertex (pl.: vertices or vertexes) is a point where two or more curves, lines, or edges meet or intersect. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices. [1] [2] [3]

  7. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Modern school textbooks often define separate figures called lines (infinite), rays (semi-infinite), and line segments (of finite length). Euclid, rather than discussing a ray as an object that extends to infinity in one direction, would normally use locutions such as "if the line is extended to a sufficient length", although he occasionally ...

  8. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the lineline intersection between two distinct lines , which either is one point (sometimes called a vertex ) or does not exist (if the lines are parallel ).

  9. Intercept theorem - Wikipedia

    en.wikipedia.org/wiki/Intercept_theorem

    The intercept theorem, also known as Thales's theorem, basic proportionality theorem or side splitter theorem, is an important theorem in elementary geometry about the ratios of various line segments that are created if two rays with a common starting point are intercepted by a pair of parallels.

  1. Ad

    related to: geometry lines rays segments