Search results
Results from the WOW.Com Content Network
A classic form of state diagram for a finite automaton (FA) is a directed graph with the following elements (Q, Σ, Z, δ, q 0, F): [2] [3] Vertices Q: a finite set of states, normally represented by circles and labeled with unique designator symbols or words written inside them; Input symbols Σ: a finite collection of input symbols or designators
An automaton with a finite number of states is called a finite automaton (FA) or finite-state machine (FSM). The figure on the right illustrates a finite-state machine, which is a well-known type of automaton. This automaton consists of states (represented in the figure by circles) and transitions (represented by arrows).
A finite-state machine (FSM) or finite-state automaton (FSA, plural: automata), finite automaton, or simply a state machine, is a mathematical model of computation.It is an abstract machine that can be in exactly one of a finite number of states at any given time.
The figure illustrates a deterministic finite automaton using a state diagram. In this example automaton, there are three states: S 0, S 1, and S 2 (denoted graphically by circles). The automaton takes a finite sequence of 0s and 1s as input. For each state, there is a transition arrow leading out to a next state for both 0 and 1.
In particular, the intersection non-emptiness problem is defined as follows. Given a list of deterministic finite automata as input, the goal is to determine whether or not their associated regular languages have a non-empty intersection. In other, the goal is to determine if there exists a string that is accepted by all of the automata in the ...
In automata theory, an unambiguous finite automaton (UFA) is a nondeterministic finite automaton (NFA) such that each word has at most one accepting path. Each deterministic finite automaton (DFA) is an UFA, but not vice versa. DFA, UFA, and NFA recognize exactly the same class of formal languages. On the one hand, an NFA can be exponentially ...
Let k be a positive integer, and let D = (Q, Σ k, δ, q 0, Δ, τ) be a deterministic finite automaton with output, where Q is the finite set of states; the input alphabet Σ k consists of the set {0,1,...,k-1} of possible digits in base-k notation; δ : Q × Σ k → Q is the transition function; q 0 ∈ Q is the initial state;
The automaton consists of a finite set of states, a finite input alphabet of characters and edges which are labeled with both a character in and a weight in . The weight of any path in the automaton is defined to be the product of weights along the path, and the weight of a string is the sum of the weights of all paths which are labeled with ...