enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Long_short-term_memory

    Long short-term memory (LSTM) [1] is a type of recurrent neural network (RNN) aimed at mitigating the vanishing gradient problem [2] commonly encountered by traditional RNNs. Its relative insensitivity to gap length is its advantage over other RNNs, hidden Markov models , and other sequence learning methods.

  3. Jürgen Schmidhuber - Wikipedia

    en.wikipedia.org/wiki/Jürgen_Schmidhuber

    This led to the long short-term memory (LSTM), a type of recurrent neural network. The name LSTM was introduced in a tech report (1995) leading to the most cited LSTM publication (1997), co-authored by Hochreiter and Schmidhuber. [19] It was not yet the standard LSTM architecture which is used in almost all current applications. The standard ...

  4. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    This was solved by the long short-term memory (LSTM) variant in 1997, thus making it the standard architecture for RNN. RNNs have been applied to tasks such as unsegmented, connected handwriting recognition , [ 2 ] speech recognition , [ 3 ] [ 4 ] natural language processing , and neural machine translation .

  5. Gating mechanism - Wikipedia

    en.wikipedia.org/wiki/Gating_mechanism

    Gating mechanism is used in highway networks, which were designed by unrolling an LSTM. Channel gating [ 7 ] uses a gate to control the flow of information through different channels inside a convolutional neural network (CNN).

  6. Sepp Hochreiter - Wikipedia

    en.wikipedia.org/wiki/Sepp_Hochreiter

    Hochreiter developed the long short-term memory (LSTM) neural network architecture in his diploma thesis in 1991 leading to the main publication in 1997. [3] [4] LSTM overcomes the problem of numerical instability in training recurrent neural networks (RNNs) that prevents them from learning from long sequences (vanishing or exploding gradient).

  7. Gated recurrent unit - Wikipedia

    en.wikipedia.org/wiki/Gated_recurrent_unit

    Gated recurrent units (GRUs) are a gating mechanism in recurrent neural networks, introduced in 2014 by Kyunghyun Cho et al. [1] The GRU is like a long short-term memory (LSTM) with a gating mechanism to input or forget certain features, [2] but lacks a context vector or output gate, resulting in fewer parameters than LSTM. [3]

  8. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    Some artificial neural networks are adaptive systems and are used for example to model populations and environments, which constantly change. Neural networks can be hardware- (neurons are represented by physical components) or software-based (computer models), and can use a variety of topologies and learning algorithms.

  9. Connectionist temporal classification - Wikipedia

    en.wikipedia.org/wiki/Connectionist_temporal...

    CTC scores can then be used with the back-propagation algorithm to update the neural network weights. Alternative approaches to a CTC-fitted neural network include a hidden Markov model (HMM). In 2009, a Connectionist Temporal Classification (CTC)-trained LSTM network was the first RNN to win pattern recognition contests when it won several ...