Search results
Results from the WOW.Com Content Network
The geometric distribution is the only memoryless discrete probability distribution. [4] It is the discrete version of the same property found in the exponential distribution. [1]: 228 The property asserts that the number of previously failed trials does not affect the number of future trials needed for a success.
The memorylessness property asserts that the number of previously failed trials has no effect on the number of future trials needed for a success. Geometric random variables can also be defined as taking values in N 0 {\displaystyle \mathbb {N} _{0}} , which describes the number of failed trials before the first success in a sequence of ...
It is the continuous analogue of the geometric distribution, and it has the key property of being memoryless. [2] In addition to being used for the analysis of Poisson point processes it is found in various other contexts. [3] The exponential distribution is not the same as the class of exponential families of distributions.
The term strong Markov property is similar to the Markov property, except that the meaning of "present" is defined in terms of a random variable known as a stopping time. The term Markov assumption is used to describe a model where the Markov property is assumed to hold, such as a hidden Markov model .
M stands for "Markov" or "memoryless", and means arrivals occur according to a Poisson process; D stands for "deterministic", and means jobs arriving at the queue require a fixed amount of service; k describes the number of servers at the queueing node (k = 1, 2, 3, ...) If the node has more jobs than servers, then jobs will queue and wait for ...
This page lists articles related to probability theory.In particular, it lists many articles corresponding to specific probability distributions.Such articles are marked here by a code of the form (X:Y), which refers to number of random variables involved and the type of the distribution.
For an exponential survival distribution, the probability of failure is the same in every time interval, no matter the age of the individual or device. This fact leads to the "memoryless" property of the exponential survival distribution: the age of a subject has no effect on the probability of failure in the next time interval.
Chernoff bounds may also be applied to general sums of independent, bounded random variables, regardless of their distribution; this is known as Hoeffding's inequality. The proof follows a similar approach to the other Chernoff bounds, but applying Hoeffding's lemma to bound the moment generating functions (see Hoeffding's inequality ).