enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nucleic acid double helix - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_double_helix

    The double-helix model of DNA structure was first published in the journal Nature by James Watson and Francis Crick in 1953, [6] (X,Y,Z coordinates in 1954 [7]) based on the work of Rosalind Franklin and her student Raymond Gosling, who took the crucial X-ray diffraction image of DNA labeled as "Photo 51", [8] [9] and Maurice Wilkins, Alexander Stokes, and Herbert Wilson, [10] and base-pairing ...

  3. DNA - Wikipedia

    en.wikipedia.org/wiki/DNA

    Watson and Crick completed their model, which is now accepted as the first correct model of the double helix of DNA. On 28 February 1953 Crick interrupted patrons' lunchtime at The Eagle pub in Cambridge, England to announce that he and Watson had "discovered the secret of life". [209] Pencil sketch of the DNA double helix by Francis Crick in 1953

  4. Helix - Wikipedia

    en.wikipedia.org/wiki/Helix

    The pitch of a helix is the height of one complete helix turn, measured parallel to the axis of the helix. A double helix consists of two (typically congruent) helices with the same axis, differing by a translation along the axis. [3] A circular helix (i.e. one with constant radius) has constant band curvature and constant torsion. The slope of ...

  5. Nucleic acid - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid

    In 1944 the Avery–MacLeod–McCarty experiment showed that DNA is the carrier of genetic information and in 1953 Watson and Crick proposed the double-helix structure of DNA. [ 9 ] Experimental studies of nucleic acids constitute a major part of modern biological and medical research , and form a foundation for genome and forensic science ...

  6. RNA - Wikipedia

    en.wikipedia.org/wiki/RNA

    Unlike double-stranded DNA, RNA is usually a single-stranded molecule (ssRNA) [4] in many of its biological roles and consists of much shorter chains of nucleotides. [5] However, double-stranded RNA (dsRNA) can form and (moreover) a single RNA molecule can, by complementary base pairing, form intrastrand double helixes, as in tRNA .

  7. Nucleic acid secondary structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_secondary...

    The double helix is an important tertiary structure in nucleic acid molecules which is intimately connected with the molecule's secondary structure. A double helix is formed by regions of many consecutive base pairs. The nucleic acid double helix is a spiral polymer, usually right-handed, containing two nucleotide strands which base pair together.

  8. Molecular Structure of Nucleic Acids: A Structure for ...

    en.wikipedia.org/wiki/Molecular_Structure_of...

    After realizing the structural similarity of the A:T and C:G pairs, Watson and Crick soon produced their double helix model of DNA with the hydrogen bonds at the core of the helix providing a way to unzip the two complementary strands for easy replication: the last key requirement for a likely model of the genetic molecule.

  9. The Double Helix - Wikipedia

    en.wikipedia.org/wiki/The_Double_Helix

    The Double Helix: A Personal Account of the Discovery of the Structure of DNA is an autobiographical account of the discovery of the double helix structure of DNA written by James D. Watson and published in 1968. It has earned both critical and public praise, along with continuing controversy about credit for the Nobel award and attitudes ...