Search results
Results from the WOW.Com Content Network
In image processing, a kernel, convolution matrix, or mask is a small matrix used for blurring, sharpening, embossing, edge detection, and more. This is accomplished by doing a convolution between the kernel and an image. Or more simply, when each pixel in the output image is a function of the nearby pixels (including itself) in the input image ...
This reduces the number of matrix additions and subtractions from 18 to 15. The number of matrix multiplications is still 7, and the asymptotic complexity is the same. [6] The algorithm was further optimised in 2017, [7] reducing the number of matrix additions per step to 12 while maintaining the number of matrix multiplications, and again in ...
In other words, the matrix of the combined transformation A followed by B is simply the product of the individual matrices. When A is an invertible matrix there is a matrix A −1 that represents a transformation that "undoes" A since its composition with A is the identity matrix. In some practical applications, inversion can be computed using ...
In this case, if we make a very large matrix with complex exponentials in the rows (i.e., cosine real parts and sine imaginary parts), and increase the resolution without bound, we approach the kernel of the Fredholm integral equation of the 2nd kind, namely the Fourier operator that defines the continuous Fourier transform. A rectangular ...
The Hilbert matrix is also totally positive (meaning that the determinant of every submatrix is positive). The Hilbert matrix is an example of a Hankel matrix. It is also a specific example of a Cauchy matrix. The determinant can be expressed in closed form, as a special case of the Cauchy determinant. The determinant of the n × n Hilbert ...
The design matrix has dimension n-by-p, where n is the number of samples observed, and p is the number of variables measured in all samples. [4] [5]In this representation different rows typically represent different repetitions of an experiment, while columns represent different types of data (say, the results from particular probes).
More generally, we can factor a complex m×n matrix A, with m ≥ n, as the product of an m×m unitary matrix Q and an m×n upper triangular matrix R.As the bottom (m−n) rows of an m×n upper triangular matrix consist entirely of zeroes, it is often useful to partition R, or both R and Q:
The high rank matrix completion in general is NP-Hard. However, with certain assumptions, some incomplete high rank matrix or even full rank matrix can be completed. Eriksson, Balzano and Nowak [10] have considered the problem of completing a matrix with the assumption that the columns of the matrix belong to a union of multiple low-rank subspaces.