Search results
Results from the WOW.Com Content Network
There are two major families of fullerenes, with fairly distinct properties and applications: the closed buckyballs and the open-ended cylindrical carbon nanotubes. [27] However, hybrid structures exist between those two classes, such as carbon nanobuds — nanotubes capped by hemispherical meshes or larger "buckybuds".
Fullerene chemistry is a field of organic chemistry devoted to the chemical properties of fullerenes. [1] [2] [3] Research in this field is driven by the need to functionalize fullerenes and tune their properties. For example, fullerene is notoriously insoluble and adding a suitable group can enhance solubility. [1]
Carbide-derived carbon (CDC) is a family of carbon materials with different surface geometries and carbon ordering that are produced via selective removal of metals from metal carbide precursors, such as TiC, SiC, Ti 3 AlC 2, Mo 2 C, etc. This synthesis is accomplished using chlorine treatment, hydrothermal synthesis, or high-temperature ...
The mechanical properties of carbon nanotubes reveal them as one of the strongest materials in nature. Carbon nanotubes (CNTs) are long hollow cylinders of graphene . Although graphene sheets have 2D symmetry, carbon nanotubes by geometry have different properties in axial and radial directions.
It is used to describe arrangements of leaves of a plant, pine cones, or pineapples, but also planar patterns of florets in a sunflower head. While the arrangement in the former are cylindrical, the spirals in the latter are arranged on a disk. For columnar structures phyllotaxis in the context of cylindrical structures is adopted.
Iron shows the characteristic chemical properties of the transition metals, namely the ability to form variable oxidation states differing by steps of one and a very large coordination and organometallic chemistry: indeed, it was the discovery of an iron compound, ferrocene, that revolutionalized the latter field in the 1950s. [1]
Besides unfilled fullerenes, endohedral metallofullerenes develop with different cage sizes like La@C 60 or La@C 82 and as different isomer cages. Aside from the dominant presence of mono-metal cages, numerous di-metal endohedral complexes and the tri-metal carbide fullerenes like Sc 3 C 2 @C 80 were also isolated. In 1999 a discovery drew ...
These endohedral fullerenes are usually synthesized by doping in the metal atoms in an arc reactor or by laser evaporation. These methods gives low yields of endohedral fullerenes, and a better method involves the opening of the cage, packing in the atoms or molecules, and closing the opening using certain organic reactions. This method ...