Search results
Results from the WOW.Com Content Network
In thermodynamics, the thermal efficiency is a dimensionless performance measure of a device that uses thermal energy, such as an internal combustion engine, steam turbine, steam engine, boiler, furnace, refrigerator, ACs etc.
Efficiency of power plants, world total, 2008. Energy conversion efficiency (η) is the ratio between the useful output of an energy conversion machine and the input, in energy terms. The input, as well as the useful output may be chemical, electric power, mechanical work, light (radiation), or heat.
Engine efficiency of thermal engines is the relationship between the total energy contained in the fuel, and the amount of energy used to perform useful work. There are two classifications of thermal engines- Internal combustion (gasoline, diesel and gas turbine-Brayton cycle engines) and
The efficiency of a system in electronics and electrical engineering is defined as useful power output divided by the total electrical power consumed (a fractional expression), typically denoted by the Greek small letter eta (η – ήτα).
Efficiency is often measured as the ratio of useful output to total input, which can be expressed with the mathematical formula r=P/C, where P is the amount of useful output ("product") produced per the amount C ("cost") of resources consumed.
A realistic indication of energy efficiency over an entire year can be achieved by using seasonal COP or seasonal coefficient of performance (SCOP) for heat. Seasonal energy efficiency ratio (SEER) is mostly used for air conditioning. SCOP is a new methodology which gives a better indication of expected real-life performance of heat pump ...
The efficiency of a plant is the percentage of the total energy content of a power plant's fuel that is converted into electricity. The remaining energy is usually lost to the environment as heat unless it is used for district heating. Rating efficiency is complicated by the fact that there are two different ways to measure the fuel energy ...
The red curve shows the power in the load, normalized relative to its maximum possible. The dark blue curve shows the efficiency η. The efficiency η is the ratio of the power dissipated by the load resistance R L to the total power dissipated by the circuit (which includes the voltage source's resistance of R S as well as R L):