Search results
Results from the WOW.Com Content Network
In computer programming, an infinite loop (or endless loop) [1] [2] is a sequence of instructions that, as written, will continue endlessly, unless an external intervention occurs, such as turning off power via a switch or pulling a plug. It may be intentional.
A loop invariant is an assertion which must be true before the first loop iteration and remain true after each iteration. This implies that when a loop terminates correctly, both the exit condition and the loop invariant are satisfied. Loop invariants are used to monitor specific properties of a loop during successive iterations.
A generator expression may be used in Python versions >= 2.4 which gives lazy evaluation over its input, and can be used with generators to iterate over 'infinite' input such as the count generator function which returns successive integers:
A conditional loop has the potential to become an infinite loop when nothing in the loop's body can affect the outcome of the loop's conditional statement. However, infinite loops can sometimes be used purposely, often with an exit from the loop built into the loop implementation for every computer language , but many share the same basic ...
Using the analysis of these relationships, execution of the loop can be organized to allow multiple processors to work on different portions of the loop in parallel. This is known as parallel processing. In general, loops can consume a lot of processing time when executed as serial code. Through parallel processing, it is possible to reduce the ...
Introduced in Python 2.2 as an optional feature and finalized in version 2.3, generators are Python's mechanism for lazy evaluation of a function that would otherwise return a space-prohibitive or computationally intensive list. This is an example to lazily generate the prime numbers:
The condition/expression is evaluated, and if the condition/expression is true, [1] the code within all of their following in the block is executed. This repeats until the condition/expression becomes false. Because the while loop checks the condition/expression before the block is executed, the control structure is often also known as a pre ...
[2] Practical cycle-detection algorithms do not find λ and μ exactly. [1] They usually find lower and upper bounds μ l ≤ μ ≤ μ h for the start of the cycle, and a more detailed search of the range must be performed if the exact value of μ is needed. Also, most algorithms do not guarantee to find λ directly, but may find some multiple ...