enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multivariate random variable - Wikipedia

    en.wikipedia.org/wiki/Multivariate_random_variable

    The correlation matrix (also called second moment) of an random vector is an matrix whose (i,j) th element is the correlation between the i th and the j th random variables.

  3. Covariance matrix - Wikipedia

    en.wikipedia.org/wiki/Covariance_matrix

    Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...

  4. Correlation - Wikipedia

    en.wikipedia.org/wiki/Correlation

    The correlation matrix is symmetric because the correlation between and is the same as the correlation between and . A correlation matrix appears, for example, in one formula for the coefficient of multiple determination , a measure of goodness of fit in multiple regression .

  5. Covariance and correlation - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_correlation

    With any number of random variables in excess of 1, the variables can be stacked into a random vector whose i th element is the i th random variable. Then the variances and covariances can be placed in a covariance matrix, in which the (i, j) element is the covariance between the i th random variable and the j th one.

  6. Spearman's rank correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Spearman's_rank_correlation...

    If F(r) is the Fisher transformation of r, the sample Spearman rank correlation coefficient, and n is the sample size, then z = n − 3 1.06 F ( r ) {\displaystyle z={\sqrt {\frac {n-3}{1.06}}}F(r)} is a z -score for r , which approximately follows a standard normal distribution under the null hypothesis of statistical independence ( ρ = 0 ).

  7. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.

  8. RV coefficient - Wikipedia

    en.wikipedia.org/wiki/RV_coefficient

    In statistics, the RV coefficient [1] is a multivariate generalization of the squared Pearson correlation coefficient (because the RV coefficient takes values between 0 and 1). [2] It measures the closeness of two set of points that may each be represented in a matrix.

  9. Correlogram - Wikipedia

    en.wikipedia.org/wiki/Correlogram

    In the analysis of data, a correlogram is a chart of correlation statistics. For example, in time series analysis , a plot of the sample autocorrelations r h {\displaystyle r_{h}\,} versus h {\displaystyle h\,} (the time lags) is an autocorrelogram .