Search results
Results from the WOW.Com Content Network
Curve of the Michaelis–Menten equation labelled in accordance with IUBMB recommendations. In biochemistry, Michaelis–Menten kinetics, named after Leonor Michaelis and Maud Menten, is the simplest case of enzyme kinetics, applied to enzyme-catalysed reactions of one substrate and one product.
This, [5] and other early work that dealt with the River Nile [6] [7] and the Columbia River [8] are discussed, in a wider context, in a book published by the Harvard Water Resources Seminar, that contains the sentence just quoted. [9] Another early model that integrated many submodels for basin chemical hydrology was the Stanford Watershed ...
Kinetically perfect enzymes have a specificity constant, k cat /K m, on the order of 10 8 to 10 9 M −1 s −1.The rate of the enzyme-catalysed reaction is limited by diffusion and so the enzyme 'processes' the substrate well before it encounters another molecule.
Water resources are natural resources of water that are potentially useful for humans, for example as a source of drinking water supply or irrigation water. These resources can be either freshwater from natural sources, or water produced artificially from other sources, such as from reclaimed water or desalinated water (). 97% of the water on Earth is salt water and only three percent is fresh ...
In biochemistry, a kinase (/ ˈ k aɪ n eɪ s, ˈ k ɪ n eɪ s,-eɪ z /) [2] is an enzyme that catalyzes the transfer of phosphate groups from high-energy, phosphate-donating molecules to specific substrates. This process is known as phosphorylation, where the high-energy ATP molecule donates a phosphate group to the substrate molecule.
Biochemical systems theory is a mathematical modelling framework for biochemical systems, based on ordinary differential equations (ODE), in which biochemical processes are represented using power-law expansions in the variables of the system.
For example, it is sometimes difficult to discern the origin of an oxygen atom in the final product; since it may have come from water or from part of the substrate. This may be determined by systematically substituting oxygen's stable isotope 18 O into the various molecules that participate in the reaction and checking for the isotope in the ...
Bioreactor. Biochemical engineering, also known as bioprocess engineering, is a field of study with roots stemming from chemical engineering and biological engineering.It mainly deals with the design, construction, and advancement of unit processes that involve biological organisms (such as fermentation) or organic molecules (often enzymes) and has various applications in areas of interest ...