Search results
Results from the WOW.Com Content Network
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
The natural sum and natural product operations on ordinals were defined in 1906 by Gerhard Hessenberg, and are sometimes called the Hessenberg sum (or product) (Sierpiński 1958). The natural sum of α and β is often denoted by α ⊕ β or α # β, and the natural product by α ⊗ β or α ⨳ β. The natural sum and product are defined as ...
the set of natural numbers, irrespective of including or excluding zero, the set of all integers, any infinite subset of the integers, such as the set of all square numbers or the set of all prime numbers, the set of all rational numbers, the set of all constructible numbers (in the geometric sense), the set of all algebraic numbers,
The sign of the square root needs to be chosen properly—note that if 2 π is added to θ, the quantities inside the square roots are unchanged, but the left-hand-sides of the equations change sign. Therefore, the correct sign to use depends on the value of θ.
with this last subject to the condition that the roots (defined below) , sum to a non-zero value: +. The E α {\displaystyle E_{\alpha }} are sometimes called ladder operators , as they have this property of raising/lowering the value of β {\displaystyle \beta } .
A set whose elements can be put into a one-to-one correspondence with the set of natural numbers, making it countable. enumeration The process of listing or counting elements in a set, especially for countable sets. epsilon 1. An epsilon number is an ordinal α such that α=ω α 2. Epsilon zero (ε 0) is the smallest epsilon number equinumerous
In trigonometry, Mollweide's formula is a pair of relationships between sides and angles in a triangle. [1] [2]A variant in more geometrical style was first published by Isaac Newton in 1707 and then by Friedrich Wilhelm von Oppel [] in 1746.
In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or (0, 1) in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.