Search results
Results from the WOW.Com Content Network
Scalar–tensor–vector gravity (STVG) [1] is a modified theory of gravity developed by John Moffat, a researcher at the Perimeter Institute for Theoretical Physics in Waterloo, Ontario. The theory is also often referred to by the acronym MOG ( MO dified G ravity ).
An action of such a gravitational scalar–tensor theory can be written as follows: = [() () + (,)], where is the metric determinant, is the Ricci scalar constructed from the metric , is a coupling constant with the dimensions , () is the scalar-field potential, is the material Lagrangian and represents the non-gravitational fields.
Indeed, the theory he finally arrived at in 1915, general relativity, is a tensor theory, not a scalar theory, with a 2-tensor, the metric, as the potential. Unlike his 1913 scalar theory, it is generally covariant, and it does take into account the field energy–momentum–stress of the electromagnetic field (or any other nongravitational field).
Tensor–vector–scalar gravity (TeVeS), [1] developed by Jacob Bekenstein in 2004, is a relativistic generalization of Mordehai Milgrom's Modified Newtonian dynamics (MOND) paradigm. [2] [3] The main features of TeVeS can be summarized as follows: As it is derived from the action principle, TeVeS respects conservation laws;
Vector field (blue) and its associated scalar potential field (red). Point P between earth and moon is the point of equilibrium . In physics , a gravitational field or gravitational acceleration field is a vector field used to explain the influences that a body extends into the space around itself. [ 1 ]
The graviton must be a spin-2 boson because the source of gravitation is the stress–energy tensor, a second-order tensor (compared with electromagnetism's spin-1 photon, the source of which is the four-current, a first-order tensor). Additionally, it can be shown that any massless spin-2 field would give rise to a force indistinguishable from ...
Amount of magnetic moment per unit volume A/m L −1 I: vector field Momentum: p →: Product of an object's mass and velocity kg⋅m/s L M T −1: vector, extensive Pop: p →: Rate of change of crackle per unit time: the sixth time derivative of position m/s 6: L T −6: vector Pressure gradient: Pressure per unit distance pascal/m L −2 M 1 ...
This is due to the fact that Nordström's theory of gravitation is a scalar theory, whereas Einstein's theory of gravitation (general relativity) is a tensor theory. On the other hand, gravitational waves in both theories are transverse waves. Electromagnetic plane waves are of course also transverse. The tidal tensor