enow.com Web Search

  1. Ad

    related to: when is an ode linear equation given slope and a point

Search results

  1. Results from the WOW.Com Content Network
  2. Slope field - Wikipedia

    en.wikipedia.org/wiki/Slope_field

    the slope field is an array of slope marks in the phase space (in any number of dimensions depending on the number of relevant variables; for example, two in the case of a first-order linear ODE, as seen to the right). Each slope mark is centered at a point (,,, …,) and is parallel to the vector

  3. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    Consider the problem of calculating the shape of an unknown curve which starts at a given point and satisfies a given differential equation. Here, a differential equation can be thought of as a formula by which the slope of the tangent line to the curve can be computed at any point on the curve, once the position of that point has been calculated.

  4. Isocline - Wikipedia

    en.wikipedia.org/wiki/Isocline

    Isoclines are often used as a graphical method of solving ordinary differential equations. In an equation of the form y' = f(x, y), the isoclines are lines in the (x, y) plane obtained by setting f(x, y) equal to a constant. This gives a series of lines (for different constants) along which the solution curves have the same gradient.

  5. Ordinary differential equation - Wikipedia

    en.wikipedia.org/wiki/Ordinary_differential_equation

    Among ordinary differential equations, linear differential equations play a prominent role for several reasons. Most elementary and special functions that are encountered in physics and applied mathematics are solutions of linear differential equations (see Holonomic function). When physical phenomena are modeled with non-linear equations, they ...

  6. Linear differential equation - Wikipedia

    en.wikipedia.org/wiki/Linear_differential_equation

    In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form + ′ + ″ + () = where a 0 (x), ..., a n (x) and b(x) are arbitrary differentiable functions that do not need to be linear, and y′, ..., y (n) are the successive derivatives of an unknown function y of ...

  7. Linearization - Wikipedia

    en.wikipedia.org/wiki/Linearization

    The linear approximation of a function is the first order Taylor expansion around the point of interest. In the study of dynamical systems, linearization is a method for assessing the local stability of an equilibrium point of a system of nonlinear differential equations or discrete dynamical systems. [1]

  8. Linear function (calculus) - Wikipedia

    en.wikipedia.org/wiki/Linear_function_(calculus)

    The fundamental idea of differential calculus is that any smooth function () (not necessarily linear) can be closely approximated near a given point = by a unique linear function. The derivative f ′ ( c ) {\displaystyle f\,'(c)} is the slope of this linear function, and the approximation is: f ( x ) ≈ f ′ ( c ) ( x − c ) + f ( c ...

  9. Green's function - Wikipedia

    en.wikipedia.org/wiki/Green's_function

    Through the superposition principle, given a linear ordinary differential equation (ODE), =, one can first solve =, for each s, and realizing that, since the source is a sum of delta functions, the solution is a sum of Green's functions as well, by linearity of L.

  1. Ad

    related to: when is an ode linear equation given slope and a point