Search results
Results from the WOW.Com Content Network
The power rule for differentiation was derived by Isaac Newton and Gottfried Wilhelm Leibniz, each independently, for rational power functions in the mid 17th century, who both then used it to derive the power rule for integrals as the inverse operation. This mirrors the conventional way the related theorems are presented in modern basic ...
The Kruskal-Newton diagram facilitates identifying the required scaled functions needed for dominant balance of algebraic and differential equations. [ 5 ] For differential equation solutions containing an irregular singularity , the leading behavior is the first term of an asymptotic series solution that remains when the independent variable z ...
Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation. An alternative method is to use techniques from calculus to obtain a series expansion of the ...
Suppose further that a 1 /a 2 and a 0 /a 2 are analytic functions. The power series method calls for the construction of a power series solution = =. If a 2 is zero for some z, then the Frobenius method, a variation on this method, is suited to deal with so called "singular points". The method works analogously for higher order equations as ...
The analytical method of separation of variables for solving partial differential equations has also been generalized into a computational method of decomposition in invariant structures that can be used to solve systems of partial differential equations. [1]
Holonomic functions can also be described as differentiably finite functions, also known as D-finite functions. When a power series in the variables is the Taylor expansion of a holonomic function, the sequence of its coefficients, in one or several indices, is also called holonomic .
If we know that (,) satisfies an equation (like the Black–Scholes equation) we are guaranteed that we can make good use of the equation in the derivation of the equation for a new function (,) defined in terms of the old if we write the old V as a function of the new v and write the new and x as functions of the old t and S.
Dynamic simulation (or dynamic system simulation) is the use of a computer program to model the time-varying behavior of a dynamical system. The systems are typically described by ordinary differential equations or partial differential equations. A simulation run solves the state-equation system to find the behavior of the state variables over ...