Search results
Results from the WOW.Com Content Network
In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean, respectively.
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]
The percent value is computed by multiplying the numeric value of the ratio by 100. For example, to find 50 apples as a percentage of 1,250 apples, one first computes the ratio 50 / 1250 = 0.04, and then multiplies by 100 to obtain 4%. The percent value can also be found by multiplying first instead of later, so in this example, the 50 ...
Notation for the (principal) square root of x. For example, √ 25 = 5, since 25 = 5 ⋅ 5, or 5 2 (5 squared). In mathematics, a square root of a number x is a number y such that =; in other words, a number y whose square (the result of multiplying the number by itself, or ) is x. [1]
For the normal distribution, this accounts for 68.27 percent of the set; while two standard deviations from the mean (medium and dark blue) account for 95.45 percent; three standard deviations (light, medium, and dark blue) account for 99.73 percent; and four standard deviations account for 99.994 percent.
A golden rectangle with long side a + b and short side a can be divided into two pieces: a similar golden rectangle (shaded red, right) with long side a and short side b and a square (shaded blue, left) with sides of length a.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In the physics of gas molecules, the root-mean-square speed is defined as the square root of the average squared-speed. The RMS speed of an ideal gas is calculated using the following equation: v RMS = 3 R T M {\displaystyle v_{\text{RMS}}={\sqrt {3RT \over M}}}