enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bernoulli trial - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_trial

    Graphs of probability P of not observing independent events each of probability p after n Bernoulli trials vs np for various p.Three examples are shown: Blue curve: Throwing a 6-sided die 6 times gives a 33.5% chance that 6 (or any other given number) never turns up; it can be observed that as n increases, the probability of a 1/n-chance event never appearing after n tries rapidly converges to 0.

  3. Turning point test - Wikipedia

    en.wikipedia.org/wiki/Turning_point_test

    In statistical hypothesis testing, a turning point test is a statistical test of the independence of a series of random variables. [1] [2] [3] Maurice Kendall and Alan Stuart describe the test as "reasonable for a test against cyclicity but poor as a test against trend." [4] [5] The test was first published by Irénée-Jules Bienaymé in 1874 ...

  4. Sequential probability ratio test - Wikipedia

    en.wikipedia.org/wiki/Sequential_probability...

    For instance, suppose the cutscore is set at 70% for a test. We could select p 1 = 0.65 and p 2 = 0.75. The test then evaluates the likelihood that an examinee's true score on that metric is equal to one of those two points. If the examinee is determined to be at 75%, they pass, and they fail if they are determined to be at 65%.

  5. Kolmogorov's three-series theorem - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov's_three-series...

    In probability theory, Kolmogorov's Three-Series Theorem, named after Andrey Kolmogorov, gives a criterion for the almost sure convergence of an infinite series of random variables in terms of the convergence of three different series involving properties of their probability distributions.

  6. Law of truly large numbers - Wikipedia

    en.wikipedia.org/wiki/Law_of_truly_large_numbers

    For an event X that occurs with very low probability of 0.0000001%, or once in one billion trials, in any single sample (see also almost never), considering 1,000,000,000 as a "truly large" number of independent samples gives the probability of occurrence of X equal to 1 − 0.999999999 1000000000 ≈ 0.63 = 63% and a number of independent ...

  7. Free probability - Wikipedia

    en.wikipedia.org/wiki/Free_probability

    Free probability is a mathematical theory that studies non-commutative random variables. The "freeness" or free independence property is the analogue of the classical notion of independence , and it is connected with free products .

  8. Rule of three (statistics) - Wikipedia

    en.wikipedia.org/wiki/Rule_of_three_(statistics)

    The rule can then be derived [2] either from the Poisson approximation to the binomial distribution, or from the formula (1−p) n for the probability of zero events in the binomial distribution. In the latter case, the edge of the confidence interval is given by Pr( X = 0) = 0.05 and hence (1− p ) n = .05 so n ln (1– p ) = ln .05 ≈ −2.996.

  9. De Moivre–Laplace theorem - Wikipedia

    en.wikipedia.org/wiki/De_Moivre–Laplace_theorem

    Within a system whose bins are filled according to the binomial distribution (such as Galton's "bean machine", shown here), given a sufficient number of trials (here the rows of pins, each of which causes a dropped "bean" to fall toward the left or right), a shape representing the probability distribution of k successes in n trials (see bottom of Fig. 7) matches approximately the Gaussian ...