Search results
Results from the WOW.Com Content Network
Depletion-load circuits consume less power than enhancement-load circuits at the same speed. In both cases the connection to 1 is always active, even when the connection to 0 is also active. This results in high static power consumption. The amount of waste depends on the strength, or physical size, of the pull-up.
A standard TTL input at logic "1" is normally operated assuming a source current of 40 μA, and a voltage level above 2.4 V, allowing a pull-up resistor of no more than 50 kohms; whereas the TTL input at logic "0" will be expected to sink 1.6 mA at a voltage below 0.8 V, requiring a pull-down resistor less than 500 ohms. [2]
A 555 timer can act as an active-low SR latch (though without an inverted Q output) with two outputs: output pin is a push-pull output, discharge pin is an open-collector output (requires a pull-up resistor). For the schematic on the right, a Reset input signal connects to the RESET pin and connecting a Set input signal to the TR pin.
If all the input voltages are low (logical "0"), the transistor is cut-off. The pull-down resistor R 1 biases the transistor to the appropriate on-off threshold. The output is inverted since the collector-emitter voltage of transistor Q 1 is taken as output, and is high when the inputs are low. Thus, the analog resistive network and the analog ...
The purpose is to reduce the overall power demand compared to using both a strong pull-up and a strong pull-down. [10] A pure open-drain driver, by comparison, has no pull-up strength except for leakage current: all the pull-up action is on the external termination resistor.
An active-low OR diode logic gate is formed by a keypad containing diodes at each switch, all connected to a shared pull-up resistor. When no switch is closed, the pull-up keeps the output high. But when the switch for any key connects to ground, the output goes low. This OR result can be used as an interrupt signal to indicate that any key has ...
The method of logical effort, a term coined by Ivan Sutherland and Bob Sproull in 1991, is a straightforward technique used to estimate delay in a CMOS circuit. Used properly, it can aid in selection of gates for a given function (including the number of stages necessary) and sizing gates to achieve the minimum delay possible for a circuit.
Circuit designers will often use pull-up or pull-down resistors (usually within the range of 1–100 kΩ) to influence the circuit when the output is tri-stated. The PCI local bus provides pull-up resistors, but they would require several clock cycles to pull a signal high given the bus's large distributed capacitance .