Search results
Results from the WOW.Com Content Network
In mathematics, a group G is called the direct sum [1] [2] of two normal subgroups with trivial intersection if it is generated by the subgroups. In abstract algebra, this method of construction of groups can be generalized to direct sums of vector spaces, modules, and other structures; see the article direct sum of modules for more information.
For an arbitrary family of groups indexed by , their direct sum [2] is the subgroup of the direct product that consists of the elements () that have finite support, where by definition, () is said to have finite support if is the identity element of for all but finitely many . [3] The direct sum of an infinite family () of non-trivial groups is ...
In mathematics, specifically in group theory, the direct product is an operation that takes two groups G and H and constructs a new group, usually denoted G × H.This operation is the group-theoretic analogue of the Cartesian product of sets and is one of several important notions of direct product in mathematics.
2. Direct sum: if E and F are two abelian groups, vector spaces, or modules, then their direct sum, denoted is an abelian group, vector space, or module (respectively) equipped with two monomorphisms: and : such that is the internal direct sum of () and ().
The values of n, q 1, ..., q t are (up to rearranging the indices) uniquely determined by G, that is, there is one and only one way to represent G as such a decomposition. The proof of this statement uses the basis theorem for finite abelian group: every finite abelian group is a direct sum of primary cyclic groups. Denote the torsion subgroup ...
As well as the direct sum, another way to combine free abelian groups is to use the tensor product of -modules. The tensor product of two free abelian groups is always free abelian, with a basis that is the Cartesian product of the bases for the two groups in the product. [22]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
More generally, is called the direct sum of a finite set of subgroups, …, of the map = is a topological isomorphism. If a topological group G {\displaystyle G} is the topological direct sum of the family of subgroups H 1 , … , H n {\displaystyle H_{1},\ldots ,H_{n}} then in particular, as an abstract group (without topology) it is also the ...