Search results
Results from the WOW.Com Content Network
Artistic representation of Earth's magnetosphere. The plasma sheet is highlighted in yellow. In the magnetosphere, the plasma sheet is a sheet-like region of denser (0.3-0.5 ions/cm 3 versus 0.01-0.02 in the lobes) [citation needed] hot plasma and lower magnetic field located on the magnetotail and near the equatorial plane, between the magnetosphere's north and south lobes.
The VLF radio waves were previously thought to be generated by turbulence in the radiation belts, but recent work by J.L. Green of the Goddard Space Flight Center [citation needed] compared maps of lightning activity collected by the Microlab 1 spacecraft with data on radio waves in the radiation-belt gap from the IMAGE spacecraft; the results ...
This orbit enables observations of the magnetosphere’s response to varying solar wind conditions from the full range of vantage points over time scales encompassing all space weather phenomena. Furthermore, this orbit allows scientific return 100% of the time from at least a single instrument and up to 83% of the time from all instruments ...
This current reduces the magnetic field at the Earth's surface. [27] Particles that penetrate the ionosphere and collide with the atoms there give rise to the lights of the aurorae while also emitting X-rays. [28] The varying conditions in the magnetosphere, known as space weather, are largely driven by solar
The magnetosphere of Jupiter is the largest planetary magnetosphere in the Solar System, extending up to 7,000,000 kilometers (4,300,000 mi) on the dayside and almost to the orbit of Saturn on the nightside. [17] Jupiter's magnetosphere is stronger than Earth's by an order of magnitude, and its magnetic moment is approximately 18,000 times ...
The ring current system consists of a band, at a distance of 3 to 8 R E, [1] which lies in the equatorial plane and circulates clockwise around the Earth (when viewed from the north). The particles of this region produce a magnetic field in opposition to the Earth's magnetic field and so an Earthly observer would observe a decrease in the ...
A video simulation of Earth's magnetic field interacting with the (solar) interplanetary magnetic field (IMF) The plasma in the interplanetary medium is also responsible for the strength of the Sun's magnetic field at the orbit of the Earth being over 100 times greater than originally anticipated.
Schematic of the Birkeland or Field-Aligned Currents and the ionospheric current systems they connect to, Pedersen and Hall currents. [1]A Birkeland current (also known as field-aligned current, FAC) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere.