Search results
Results from the WOW.Com Content Network
The ANOVA tests the null hypothesis, which states that samples in all groups are drawn from populations with the same mean values. To do this, two estimates are made of the population variance. These estimates rely on various assumptions . The ANOVA produces an F-statistic, the ratio of the variance calculated among the means to the variance ...
The textbook method is to compare the observed value of F with the critical value of F determined from tables. The critical value of F is a function of the degrees of freedom of the numerator and the denominator and the significance level (α). If F ≥ F Critical, the null hypothesis is rejected.
In null-hypothesis significance testing, the p-value [note 1] is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. [2] [3] A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis.
Linear Regression procedure has been run on the data, as follows: The omnibus F test in the ANOVA table implies that the model involved these three predictors can fit for predicting "Average cost of claims", since the null hypothesis is rejected (P-Value=0.000 < 0.01, α=0.01).
Common examples of the use of F-tests include the study of the following cases . One-way ANOVA table with 3 random groups that each has 30 observations. F value is being calculated in the second to last column The hypothesis that the means of a given set of normally distributed populations, all having the same standard deviation, are equal.
If the resulting p-value of Levene's test is less than some significance level (typically 0.05), the obtained differences in sample variances are unlikely to have occurred based on random sampling from a population with equal variances. Thus, the null hypothesis of equal variances is rejected and it is concluded that there is a difference ...
To determine whether a result is statistically significant, a researcher calculates a p-value, which is the probability of observing an effect of the same magnitude or more extreme given that the null hypothesis is true. [5] [12] The null hypothesis is rejected if the p-value is less than (or equal to) a predetermined level, .
p-value of chi-squared distribution for different number of degrees of freedom. The p-value was introduced by Karl Pearson [6] in the Pearson's chi-squared test, where he defined P (original notation) as the probability that the statistic would be at or above a given level. This is a one-tailed definition, and the chi-squared distribution is ...