Search results
Results from the WOW.Com Content Network
Most materials have Poisson's ratio values ranging between 0.0 and 0.5. For soft materials, [1] such as rubber, where the bulk modulus is much higher than the shear modulus, Poisson's ratio is near 0.5. For open-cell polymer foams, Poisson's ratio is near zero, since the cells tend to collapse in compression.
The elastic properties can be well-characterized by the Young's modulus, Poisson's ratio, Bulk modulus, and Shear modulus or they may be described by the Lamé parameters. Young's modulus [ edit ]
E 1 and E 2 are the Young's moduli in the 1- and 2-direction and G 12 is the in-plane shear modulus. v 12 is the major Poisson's ratio and v 21 is the minor Poisson's ratio. The flexibility matrix [S] is symmetric. The minor Poisson's ratio can hence be found if E 1, E 2 and v 12 are known.
The plate elastic thickness (usually referred to as effective elastic thickness of the lithosphere). The elastic properties of the plate; The applied load or force; As flexural rigidity of the plate is determined by the Young's modulus, Poisson's ratio and cube of the plate's elastic thickness, it is a governing factor in both (1) and (2).
CRC cites American Institute of Physics Handbook (AIPH) table 3f-2 for this value, but in AIPH table 2f-6 there are elastic constants reported that yield 3700,1570, 2620 WEL: 2680: AIPH: 3700: 1570: 2620: Table 2f-6. Calculated from Young's modulus of 147 GPa (lower than commonly accepted for Platinum), Poisson's ratio of 0.39, density of 21370 ...
The modulus of elasticity can be used to determine the stress–strain relationship in the linear-elastic portion of the stress–strain curve. The linear-elastic region is either below the yield point, or if a yield point is not easily identified on the stress–strain plot it is defined to be between 0 and 0.2% strain, and is defined as the ...
The following kinematic assumptions are made in this theory: [3] ... is the Young's modulus, is the Poisson's ratio, and are the in-plane strains. The through-the ...
where is the elastic modulus of the material and is the Poisson's ratio. The Poisson's ratio for soft tissues is approximated to equal 0.5, resulting in the ratio between the elastic modulus and shear modulus to equal 3. [11] This relationship can be used to estimate the stiffness of biological tissues based on the calculated shear modulus from ...