enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radiant intensity - Wikipedia

    en.wikipedia.org/wiki/Radiant_intensity

    Radiant intensity is used to characterize the emission of radiation by an antenna: [2], = (), where E e is the irradiance of the antenna;; r is the distance from the antenna.; Unlike power density, radiant intensity does not depend on distance: because radiant intensity is defined as the power through a solid angle, the decreasing power density over distance due to the inverse-square law is ...

  3. Solar irradiance - Wikipedia

    en.wikipedia.org/wiki/Solar_irradiance

    Radiant energy may be developed for solar power generation. Solar irradiation figures are used to plan the deployment of solar power systems . [ 40 ] In many countries, the figures can be obtained from an insolation map or from insolation tables that reflect data over the prior 30–50 years.

  4. Irradiance - Wikipedia

    en.wikipedia.org/wiki/Irradiance

    Radiant intensity: I e,Ω [nb 5] watt per steradian: W/sr: M⋅L 2 ⋅T −3: Radiant flux emitted, reflected, transmitted or received, per unit solid angle. This is a directional quantity. Spectral intensity: I e,Ω,ν [nb 3] watt per steradian per hertz W⋅sr −1 ⋅Hz −1: M⋅L 2 ⋅T −2: Radiant intensity per unit frequency or wavelength.

  5. Radiant flux - Wikipedia

    en.wikipedia.org/wiki/Radiant_flux

    Radiant intensity: I e,Ω [nb 5] watt per steradian: W/sr: M⋅L 2 ⋅T −3: Radiant flux emitted, reflected, transmitted or received, per unit solid angle. This is a directional quantity. Spectral intensity: I e,Ω,ν [nb 3] watt per steradian per hertz W⋅sr −1 ⋅Hz −1: M⋅L 2 ⋅T −2: Radiant intensity per unit frequency or wavelength.

  6. Radiant energy - Wikipedia

    en.wikipedia.org/wiki/Radiant_energy

    Radiant intensity: I e,Ω [nb 5] watt per steradian: W/sr: M⋅L 2 ⋅T −3: Radiant flux emitted, reflected, transmitted or received, per unit solid angle. This is a directional quantity. Spectral intensity: I e,Ω,ν [nb 3] watt per steradian per hertz W⋅sr −1 ⋅Hz −1: M⋅L 2 ⋅T −2: Radiant intensity per unit frequency or wavelength.

  7. Radiant exposure - Wikipedia

    en.wikipedia.org/wiki/Radiant_exposure

    Radiant intensity: I e,Ω [nb 5] watt per steradian: W/sr: M⋅L 2 ⋅T −3: Radiant flux emitted, reflected, transmitted or received, per unit solid angle. This is a directional quantity. Spectral intensity: I e,Ω,ν [nb 3] watt per steradian per hertz W⋅sr −1 ⋅Hz −1: M⋅L 2 ⋅T −2: Radiant intensity per unit frequency or wavelength.

  8. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    The radiant exitance (previously called radiant emittance), , has dimensions of energy flux (energy per unit time per unit area), and the SI units of measure are joules per second per square metre (J⋅s −1 ⋅m −2), or equivalently, watts per square metre (W⋅m −2). [2] The SI unit for absolute temperature, T, is the kelvin (K).

  9. Light intensity - Wikipedia

    en.wikipedia.org/wiki/Light_intensity

    Radiant intensity, a radiometric quantity measured in watts per steradian (W/sr) Luminous intensity, a photometric quantity measured in lumens per steradian (lm/sr), or candela (cd) Irradiance, a radiometric quantity, measured in watts per square meter (W/m 2) Intensity (physics), the name for irradiance used in other branches of physics (W/m 2)