Search results
Results from the WOW.Com Content Network
However, it's been argued that despite waves the microwave auditory effect only constituting a rapid 10 −6 °C rise in temperature, for threshold peaks on each pulse, that, at the least, a strong peak of around 1400 kW/cm² (1.4 billion mW/cm²) would certainly be harmful due to the resulting pressure wave.
However, if we define sound as the waves themselves, then sound would be produced. This all leaves out sounds heard from imagination, hallucination, synesthesia, and tinnitus. These phenomena prove that sound is virtualized reality since these all exist without vibration in the air. The same applies to all other senses that produce perceptions.
It is a common understanding in psychoacoustics that the ear cannot respond to sounds at such high frequency via an air-conduction pathway, so one question that this research raised was: does the hypersonic effect occur via the "ordinary" route of sound travelling through the air passage in the ear, or in some other way?
The fire will act like a cat going after a laser pointer light and that is all it takes to cut off the oxygen from the fire." The duo says that one day, they hope this technique can help out in a ...
Although there are many complexities relating to the transmission of sounds, at the point of reception (i.e. the ears), sound is readily dividable into two simple elements: pressure and time. These fundamental elements form the basis of all sound waves. They can be used to describe, in absolute terms, every sound we hear.
Hearing is not a purely mechanical phenomenon of wave propagation, but is also a sensory and perceptual event. When a person hears something, that something arrives at the ear as a mechanical sound wave traveling through the air, but within the ear it is transformed into neural action potentials. These nerve pulses then travel to the brain ...
Vision and hearing are akin in that each entails detection of reflected waves of energy. Vision processes light waves that travel from their source, bounce off surfaces throughout the environment and enter the eyes. Similarly, the auditory system processes sound waves as they travel from their source, bounce off surfaces and enter the ears.
In humans, sound waves funnel into the ear via the external ear canal and reach the eardrum (tympanic membrane). The compression and rarefaction of these waves set this thin membrane in motion, causing sympathetic vibration through the middle ear bones (the ossicles : malleus, incus, and stapes), the basilar fluid in the cochlea, and the hairs ...