Search results
Results from the WOW.Com Content Network
In 2009, a team of MIT physicists demonstrated that a lithium gas cooled to less than one kelvin can exhibit ferromagnetism. [12] The team cooled fermionic lithium-6 to less than 150 nK (150 billionths of one kelvin) using infrared laser cooling. This demonstration is the first time that ferromagnetism has been demonstrated in a gas.
Ferromagnetic materials (like iron) are composed of microscopic regions called magnetic domains, that act like tiny permanent magnets that can change their direction of magnetization. Before an external magnetic field is applied to the material, the domains' magnetic fields are oriented in random directions, effectively cancelling each other ...
Magnetic response M is dependent upon the orientation of the sample and can occur in directions other than that of the applied field H. In these cases, volume susceptibility is defined as a tensor : M i = H j χ i j {\displaystyle M_{i}=H_{j}\chi _{ij}} where i and j refer to the directions (e.g., of the x and y Cartesian coordinates ) of the ...
Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other.Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, magnetism is one of two aspects of electromagnetism.
Magnetization can be compared to electric polarization, which is the measure of the corresponding response of a material to an electric field in electrostatics. Magnetization also describes how a material responds to an applied magnetic field as well as the way the material changes the magnetic field, and can be used to calculate the forces ...
A magnetic alloy is a combination of various metals from the periodic table such as ferrite that exhibits magnetic properties such as ferromagnetism.Typically the alloy contains one of the three main magnetic elements (which appear on the Bethe-Slater curve): iron (Fe), nickel (Ni), or cobalt (Co).
A magnet is a material or object that produces a magnetic field.This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, cobalt, etc. and attracts or repels other magnets.
Magnetostriction is a property of magnetic materials that causes them to change their shape or dimensions during the process of magnetization.The variation of materials' magnetization due to the applied magnetic field changes the magnetostrictive strain until reaching its saturation value, λ.