Search results
Results from the WOW.Com Content Network
In nuclear physics, the concept of a neutron cross section is used to express the likelihood of interaction between an incident neutron and a target nucleus. The neutron cross section σ can be defined as the area in cm 2 for which the number of neutron-nuclei reactions taking place is equal to the product of the number of incident neutrons that would pass through the area and the number of ...
The predecessor group to the NNDC was founded in 1951 when a group known as the Brookhaven Neutron Cross Section Compilation Group was formed at the Brookhaven National Laboratory. In 1955 this group published the reference book "BNL-325," which had to do with the cross-sections of neutrons. After being renamed the Sigma Center, the group was ...
Nuclear cross sections are used in determining the nuclear reaction rate, and are governed by the reaction rate equation for a particular set of particles (usually viewed as a "beam and target" thought experiment where one particle or nucleus is the "target", which is typically at rest, and the other is treated as a "beam", which is a projectile with a given energy).
Cross sections can be computed for atomic collisions but also are used in the subatomic realm. For example, in nuclear physics a "gas" of low-energy neutrons collides with nuclei in a reactor or other nuclear device, with a cross section that is energy-dependent and hence also with well-defined mean free path between collisions.
Devices coated with natural Gd have also been explored, mainly because of its large thermal neutron microscopic cross section of 49,000 barns. [37] [38] However, the Gd(n,γ) reaction products of interest are mainly low energy conversion electrons, mostly grouped around 70 keV. Consequently, discrimination between neutron induced events and ...
A thermal neutron is a free neutron with a kinetic energy of about 0.025 eV (about 4.0×10 −21 J or 2.4 MJ/kg, hence a speed of 2.19 km/s), which is the energy corresponding to the most probable speed at a temperature of 290 K (17 °C or 62 °F), the mode of the Maxwell–Boltzmann distribution for this temperature, E peak = k T.
The absorption neutron cross section of an isotope of a chemical element is the effective cross-sectional area that an atom of that isotope presents to absorption and is a measure of the probability of neutron capture. It is usually measured in barns. Absorption cross section is often highly dependent on neutron energy. In general, the ...
Image of a helium-4 nucleus; 4 He has a very small cross-section, less than 0.01 barn.. During Manhattan Project research on the atomic bomb during World War II, American physicists Marshall Holloway and Charles P. Baker were working at Purdue University on a project using a particle accelerator to measure the cross sections of certain nuclear reactions.