Search results
Results from the WOW.Com Content Network
The Egyptians knew the correct formula for the volume of such a truncated square pyramid, but no proof of this equation is given in the Moscow papyrus. The volume of a conical or pyramidal frustum is the volume of the solid before slicing its "apex" off, minus the volume of this "apex":
The volume of a pyramid was recorded back in ancient Egypt, where they calculated the volume of a square frustum, suggesting they acquainted the volume of a square pyramid. [30] The formula of volume for a general pyramid was discovered by Indian mathematician Aryabhata, where he quoted in his Aryabhatiya that the volume of a pyramid is ...
In general, the volume of a pyramid is equal to one-third of the area of its base multiplied by its height. [8] Expressed in a formula for a square pyramid, this is: [9] =. Many mathematicians have discovered the formula for calculating the volume of a square pyramid in ancient times.
The volume of a tetrahedron can be obtained in many ways. It can be given by using the formula of the pyramid's volume: =. where is the base' area and is the height from the base to the apex. This applies for each of the four choices of the base, so the distances from the apices to the opposite faces are inversely proportional to the areas of ...
The fourteenth problem of the Moscow Mathematical calculates the volume of a frustum. Problem 14 states that a pyramid has been truncated in such a way that the top area is a square of length 2 units, the bottom a square of length 4 units, and the height 6 units, as shown. The volume is found to be 56 cubic units, which is correct. [1]
The solid angle of a four-sided right rectangular pyramid with apex angles a and b (dihedral angles measured to the opposite side faces of the pyramid) is = ( ()). If both the side lengths ( α and β ) of the base of the pyramid and the distance ( d ) from the center of the base rectangle to the apex of the pyramid (the center of ...
This follows from the spherical excess formula for a spherical polygon and the fact that the vertex figure of the polyhedron {p,q} is a regular q-gon. The solid angle of a face subtended from the center of a platonic solid is equal to the solid angle of a full sphere (4 π steradians) divided by the number of faces.
The volume can be computed without use of the Gamma function. As is proved below using a vector-calculus double integral in polar coordinates, the volume V of an n-ball of radius R can be expressed recursively in terms of the volume of an (n − 2)-ball, via the interleaved recurrence relation: