enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gabor filter - Wikipedia

    en.wikipedia.org/wiki/Gabor_filter

    Its impulse response is defined by a sinusoidal wave (a plane wave for 2D Gabor filters) multiplied by a Gaussian function. [6] Because of the multiplication-convolution property (Convolution theorem), the Fourier transform of a Gabor filter's impulse response is the convolution of the Fourier transform of the harmonic function (sinusoidal function) and the Fourier transform of the Gaussian ...

  3. Box blur - Wikipedia

    en.wikipedia.org/wiki/Box_blur

    An example of an image blurred using a box blur. A box blur (also known as a box linear filter) is a spatial domain linear filter in which each pixel in the resulting image has a value equal to the average value of its neighboring pixels in the input image. It is a form of low-pass ("blurring") filter.

  4. Log Gabor filter - Wikipedia

    en.wikipedia.org/wiki/Log_Gabor_filter

    In image processing, there are a few low-level examples of the use of Log-Gabor filters. Edge detection is one such primitive operation, where the edges of the image are labeled. Because edges appear in the frequency domain as high frequencies, it is natural to use a filter such as the Log-Gabor to pick out these edges.

  5. Image derivative - Wikipedia

    en.wikipedia.org/wiki/Image_derivative

    Image derivatives can be computed by using small convolution filters of size 2 × 2 or 3 × 3, such as the Laplacian, Sobel, Roberts and Prewitt operators. [1] However, a larger mask will generally give a better approximation of the derivative and examples of such filters are Gaussian derivatives [ 2 ] and Gabor filters . [ 3 ]

  6. Gaussian blur - Wikipedia

    en.wikipedia.org/wiki/Gaussian_blur

    In image processing, a Gaussian blur (also known as Gaussian smoothing) is the result of blurring an image by a Gaussian function (named after mathematician and scientist Carl Friedrich Gauss). It is a widely used effect in graphics software, typically to reduce image noise and reduce detail.

  7. Image fusion - Wikipedia

    en.wikipedia.org/wiki/Image_fusion

    Another important spatial domain fusion method is the high-pass filtering based technique. Here the high frequency details are injected into upsampled version of MS images. The disadvantage of spatial domain approaches is that they produce spatial distortion in the fused image. Spectral distortion becomes a negative factor while we go for ...

  8. Spatial frequency - Wikipedia

    en.wikipedia.org/wiki/Spatial_frequency

    The k-space domain and the space domain form a Fourier pair. Two pieces of information are found in each domain, the spatial information and the spatial frequency information. The spatial information, which is of great interest to all medical doctors, is seen as periodic functions in the k-space domain and is seen as the image in the space domain.

  9. Gaussian filter - Wikipedia

    en.wikipedia.org/wiki/Gaussian_filter

    In Image processing, each element in the matrix represents a pixel attribute such as brightness or color intensity, and the overall effect is called Gaussian blur. The Gaussian filter is non-causal, which means the filter window is symmetric about the origin in the time domain. This makes the Gaussian filter physically unrealizable.