Search results
Results from the WOW.Com Content Network
By infinitary pigeonhole principle, there exists a sub-subsequence (), whose indices all belong to the same residue class modulo , and so they advance by multiples of . This sequence, continued for long enough, would be forced by subadditivity to dip below the s ∗ + ϵ {\displaystyle s^{*}+\epsilon } slope line, a contradiction.
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n , a modulo n (often abbreviated as a mod n ) is the remainder of the Euclidean division of a by n , where a is the dividend and n is the divisor .
Time-keeping on this clock uses arithmetic modulo 12. Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus.
Every number in a reduced residue system modulo n is a generator for the additive group of integers modulo n. A reduced residue system modulo n is a group under multiplication modulo n . If { r 1 , r 2 , ... , r φ( n ) } is a reduced residue system modulo n with n > 2, then ∑ r i ≡ 0 mod n {\displaystyle \sum r_{i}\equiv 0\!\!\!\!\mod n} .
The multiplicative order of a number a modulo n is the order of a in the multiplicative group whose elements are the residues modulo n of the numbers coprime to n, and whose group operation is multiplication modulo n. This is the group of units of the ring Z n; it has φ(n) elements, φ being Euler's totient function, and is denoted as U(n) or ...
The longest common subsequence of sequences 1 and 2 is: LCS (SEQ 1,SEQ 2) = CGTTCGGCTATGCTTCTACTTATTCTA. This can be illustrated by highlighting the 27 elements of the longest common subsequence into the initial sequences: SEQ 1 = A CG G T G TCG T GCTATGCT GA T G CT G ACTTAT A T G CTA SEQ 2 = CGTTCGGCTAT C G TA C G TTCTA TT CT A T G ATT T CTA A
In mathematics, the plactic monoid is the monoid of all words in the alphabet of positive integers modulo Knuth equivalence. Its elements can be identified with semistandard Young tableaux . It was discovered by Donald Knuth ( 1970 ) (who called it the tableau algebra ), using an operation given by Craige Schensted ( 1961 ) in his study of the ...