enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convex hull algorithms - Wikipedia

    en.wikipedia.org/wiki/Convex_hull_algorithms

    The convex hull of a simple polygon is divided by the polygon into pieces, one of which is the polygon itself and the rest are pockets bounded by a piece of the polygon boundary and a single hull edge. Although many algorithms have been published for the problem of constructing the convex hull of a simple polygon, nearly half of them are ...

  3. Quickhull - Wikipedia

    en.wikipedia.org/wiki/Quickhull

    Input = a set S of n points Assume that there are at least 2 points in the input set S of points function QuickHull(S) is // Find convex hull from the set S of n points Convex Hull := {} Find left and right most points, say A & B, and add A & B to convex hull Segment AB divides the remaining (n − 2) points into 2 groups S1 and S2 where S1 are points in S that are on the right side of the ...

  4. Convex hull - Wikipedia

    en.wikipedia.org/wiki/Convex_hull

    Convex hulls of open sets are open, and convex hulls of compact sets are compact. Every compact convex set is the convex hull of its extreme points. The convex hull operator is an example of a closure operator, and every antimatroid can be represented by applying this closure

  5. Graham scan - Wikipedia

    en.wikipedia.org/wiki/Graham_scan

    A demo of Graham's scan to find a 2D convex hull. Graham's scan is a method of finding the convex hull of a finite set of points in the plane with time complexity O(n log n). It is named after Ronald Graham, who published the original algorithm in 1972. [1] The algorithm finds all vertices of the convex hull ordered along its boundary.

  6. Chan's algorithm - Wikipedia

    en.wikipedia.org/wiki/Chan's_algorithm

    A 2D demo for Chan's algorithm. Note however that the algorithm divides the points arbitrarily, not by x-coordinate. In computational geometry, Chan's algorithm, [1] named after Timothy M. Chan, is an optimal output-sensitive algorithm to compute the convex hull of a set of points, in 2- or 3-dimensional space.

  7. Dynamic convex hull - Wikipedia

    en.wikipedia.org/wiki/Dynamic_convex_hull

    The problem consists in the maintenance, i.e., keeping track, of the convex hull for input data undergoing a sequence of discrete changes, i.e., when input data elements may be inserted, deleted, or modified. It should be distinguished from the kinetic convex hull, which studies similar problems for continuously moving points. Dynamic convex ...

  8. Finite sphere packing - Wikipedia

    en.wikipedia.org/wiki/Finite_sphere_packing

    Convex hull in blue In general, a packing refers to any arrangement of a set of spatially-connected, possibly differently-sized or differently-shaped objects in space such that none of them overlap. In the case of the finite sphere packing problem, these objects are restricted to equally-sized spheres.

  9. Shapley–Folkman lemma - Wikipedia

    en.wikipedia.org/wiki/Shapley–Folkman_lemma

    The convex hull of a set can be equivalently defined to be the set of all convex combinations of points in Q. [11] For example, the convex hull of the set of integers {0,1} is the closed interval of real numbers [0,1], which contains the integer end-points. [7] The convex hull of the unit circle is the closed unit disk, which contains the unit ...