Search results
Results from the WOW.Com Content Network
3.1 Proof from derivative ... the quotient rule is a method of ... Product rule – Formula for the derivative of a product; Reciprocal rule ...
This follows from the product rule since the derivative of any constant is zero. This, combined with the sum rule for derivatives, shows that differentiation is linear. The rule for integration by parts is derived from the product rule, as is (a weak version of) the quotient rule.
The proof of the general Leibniz rule [2]: 68–69 proceeds by induction. Let and be -times differentiable functions.The base case when = claims that: ′ = ′ + ′, which is the usual product rule and is known to be true.
The logarithmic derivative is another way of stating the rule for differentiating the logarithm of a function (using the chain rule): () ′ = ′, wherever is positive. Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative.
Another method of deriving vector and tensor derivative identities is to replace all occurrences of a vector in an algebraic identity by the del operator, provided that no variable occurs both inside and outside the scope of an operator or both inside the scope of one operator in a term and outside the scope of another operator in the same term ...
These techniques include the chain rule, product rule, and quotient rule. Other functions cannot be differentiated at all, giving rise to the concept of differentiability. A closely related concept to the derivative of a function is its differential.
In calculus, the reciprocal rule gives the derivative of the reciprocal of a function f in terms of the derivative of f. The reciprocal rule can be used to show that the power rule holds for negative exponents if it has already been established for positive exponents. Also, one can readily deduce the quotient rule from the reciprocal rule and ...
With those tools, the Leibniz integral rule in n dimensions is [4] = () + + ˙, where Ω(t) is a time-varying domain of integration, ω is a p-form, = is the vector field of the velocity, denotes the interior product with , d x ω is the exterior derivative of ω with respect to the space variables only and ˙ is the time derivative of ω.