enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Closure (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Closure_(mathematics)

    The closure of a subset is the result of a closure operator applied to the subset. The closure of a subset under some operations is the smallest superset that is closed under these operations. It is often called the span (for example linear span ) or the generated set .

  3. Closure (topology) - Wikipedia

    en.wikipedia.org/wiki/Closure_(topology)

    The definition of a point of closure of a set is closely related to the definition of a limit point of a set.The difference between the two definitions is subtle but important – namely, in the definition of a limit point of a set , every neighbourhood of must contain a point of other than itself, i.e., each neighbourhood of obviously has but it also must have a point of that is not equal to ...

  4. Open and closed maps - Wikipedia

    en.wikipedia.org/wiki/Open_and_closed_maps

    In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. [1] [2] [3] That is, a function : is open if for any open set in , the image is open in . Likewise, a closed map is a function that maps closed sets to closed sets.

  5. Topological space - Wikipedia

    en.wikipedia.org/wiki/Topological_space

    In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance.More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms ...

  6. Simplicial complex - Wikipedia

    en.wikipedia.org/wiki/Simplicial_complex

    A simplicial 3-complex. In mathematics, a simplicial complex is a structured set composed of points, line segments, triangles, and their n-dimensional counterparts, called simplices, such that all the faces and intersections of the elements are also included in the set (see illustration).

  7. Simply connected space - Wikipedia

    en.wikipedia.org/wiki/Simply_connected_space

    The Cauchy's integral theorem states that if is a simply connected open subset of the complex plane, and : is a holomorphic function, then has an antiderivative on , and the value of every line integral in with integrand depends only on the end points and of the path, and can be computed as () ().

  8. Transitive closure - Wikipedia

    en.wikipedia.org/wiki/Transitive_closure

    In mathematics, the transitive closure R + of a homogeneous binary relation R on a set X is the smallest relation on X that contains R and is transitive. For finite sets, "smallest" can be taken in its usual sense, of having the fewest related pairs; for infinite sets R + is the unique minimal transitive superset of R .

  9. Interior algebra - Wikipedia

    en.wikipedia.org/wiki/Interior_algebra

    The dual of the interior operator is the closure operator C defined by x C = ((x′) I)′. x C is called the closure of x. By the principle of duality, the closure operator satisfies the identities: x C ≥ x; x CC = x C (x + y) C = x C + y C; 0 C = 0; If the closure operator is taken as primitive, the interior operator can be defined as x I ...