enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fifth power (algebra) - Wikipedia

    en.wikipedia.org/wiki/Fifth_power_(algebra)

    In arithmetic and algebra, the fifth power or sursolid [1] of a number n is the result of multiplying five instances of n together: n 5 = n × n × n × n × n . Fifth powers are also formed by multiplying a number by its fourth power , or the square of a number by its cube .

  3. Power of 10 - Wikipedia

    en.wikipedia.org/wiki/Power_of_10

    Visualisation of powers of 10 from one to 1 trillion. In mathematics, a power of 10 is any of the integer powers of the number ten; in other words, ten multiplied by itself a certain number of times (when the power is a positive integer). By definition, the number one is a power (the zeroth power) of ten. The first few non-negative powers of ...

  4. Order of magnitude - Wikipedia

    en.wikipedia.org/wiki/Order_of_magnitude

    Generally, the order of magnitude of a number is the smallest power of 10 used to represent that number. [4] To work out the order of magnitude of a number , the number is first expressed in the following form:

  5. Geometric progression - Wikipedia

    en.wikipedia.org/wiki/Geometric_progression

    For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3. Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with a common ratio of 1/2. Examples of a geometric sequence are powers r k of a fixed non-zero number r, such as 2 k and 3 k. The general form of a geometric sequence is

  6. Rounding - Wikipedia

    en.wikipedia.org/wiki/Rounding

    For example, rounding x = 2.1784 dollars to whole cents (i.e., to a multiple of 0.01) entails computing 2.1784 / 0.01 = 217.84, then rounding that to 218, and finally computing 218 × 0.01 = 2.18. When rounding to a predetermined number of significant digits , the increment m depends on the magnitude of the number to be rounded (or of the ...

  7. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    Thus, 6.25 = 110.01 in binary, normalised to 1.1001 × 2 2 an even power so the paired bits of the mantissa are 01, while .625 = 0.101 in binary normalises to 1.01 × 2 −1 an odd power so the adjustment is to 10.1 × 22 and the paired bits are 10. Notice that the low order bit of the power is echoed in the high order bit of the pairwise ...

  8. Numeral system - Wikipedia

    en.wikipedia.org/wiki/Numeral_system

    In base 10, ten different digits 0, ..., 9 are used and the position of a digit is used to signify the power of ten that the digit is to be multiplied with, as in 304 = 3×100 + 0×10 + 4×1 or more precisely 3×10 2 + 0×10 1 + 4×10 0. Zero, which is not needed in the other systems, is of crucial importance here, in order to be able to "skip ...

  9. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    Since 2 10 = 1024, the complete range of the positive normal floating-point numbers in this format is from 2 −1022 ≈ 2 × 10 −308 to approximately 2 1024 ≈ 2 × 10 308. The number of normal floating-point numbers in a system (B, P, L, U) where B is the base of the system, P is the precision of the significand (in base B),