Search results
Results from the WOW.Com Content Network
There are three main ortho effects in substituted benzene compounds: Steric hindrance forces cause substitution of a chemical group in the ortho position of benzoic acids become stronger acids. Steric inhibition of protonation caused by substitution of anilines to become weaker bases, compared to substitution of isomers in the meta and para ...
Substitution reactions are of prime importance in organic chemistry. Substitution reactions in organic chemistry are classified either as electrophilic or nucleophilic depending upon the reagent involved, whether a reactive intermediate involved in the reaction is a carbocation, a carbanion or a free radical, and whether the substrate is ...
The behavior of hydrogen bromide generalizes in two separate directions. Halogenated compounds with a relatively stable radical can dissociate from the halogen. Thus, for example, sulfonyl, sulfenyl, and other sulfur halides can add radically to give respectively β‑halo sulfones, sulfoxides, or sulfides. [5]: 200, 204, 206
In meta-substitution, the substituents occupy positions 1 and 3 (corresponding to R and meta in the diagram). In para-substitution, the substituents occupy the opposite ends (positions 1 and 4, corresponding to R and para in the diagram). The toluidines serve as an example for these three types of substitution.
The entering group may displace that substituent group but may also itself be expelled or migrate to another position in a subsequent step. The term 'ipso-substitution' is not used, since it is synonymous with substitution. [5] A classic example is the reaction of salicylic acid with a mixture of nitric and sulfuric acid to form picric acid.
Benzene is sufficiently nucleophilic that it undergoes substitution by acylium ions and alkyl carbocations to give substituted derivatives. Electrophilic aromatic substitution of benzene. The most widely practiced example of this reaction is the ethylation of benzene. Approximately 24,700,000 tons were produced in 1999. [73]
Because inductive effects depends strongly on proximity, the meta and ortho positions of fluorobenzene are considerably less reactive than benzene. Thus, electrophilic aromatic substitution on fluorobenzene is strongly para selective. This -I and +M effect is true for all halides - there is some electron withdrawing and donating character of each.
Electrophilic substitution reactions are chemical reactions in which an electrophile displaces a functional group in a compound, which is typically, but not always, aromatic. Aromatic substitution reactions are characteristic of aromatic compounds and are common ways of introducing functional groups into benzene rings.