enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binary heap - Wikipedia

    en.wikipedia.org/wiki/Binary_heap

    Example of a complete binary max-heap Example of a complete binary min heap. A binary heap is a heap data structure that takes the form of a binary tree. Binary heaps are a common way of implementing priority queues. [1]: 162–163 The binary heap was introduced by J. W. J. Williams in 1964 as a data structure for implementing heapsort. [2]

  3. Priority queue - Wikipedia

    en.wikipedia.org/wiki/Priority_queue

    While priority queues are often implemented using heaps, they are conceptually distinct from heaps. A priority queue is an abstract data type like a list or a map; just as a list can be implemented with a linked list or with an array, a priority queue can be implemented with a heap or another method such as an ordered array.

  4. Heap (data structure) - Wikipedia

    en.wikipedia.org/wiki/Heap_(data_structure)

    Priority queue: A priority queue is an abstract concept like "a list" or "a map"; just as a list can be implemented with a linked list or an array, a priority queue can be implemented with a heap or a variety of other methods. K-way merge: A heap data structure is useful to merge many already-sorted input streams into a single sorted output ...

  5. Double-ended priority queue - Wikipedia

    en.wikipedia.org/wiki/Double-ended_priority_queue

    Double-ended priority queues can be built from balanced binary search trees (where the minimum and maximum elements are the leftmost and rightmost leaves, respectively), or using specialized data structures like min-max heap and pairing heap. Generic methods of arriving at double-ended priority queues from normal priority queues are: [5]

  6. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    A min-priority queue is an abstract data type that provides 3 basic operations: add_with_priority(), decrease_priority() and extract_min(). As mentioned earlier, using such a data structure can lead to faster computing times than using a basic queue. Notably, Fibonacci heap [19] or Brodal queue offer optimal implementations for those 3 ...

  7. Strict Fibonacci heap - Wikipedia

    en.wikipedia.org/wiki/Strict_Fibonacci_heap

    In computer science, a strict Fibonacci heap is a priority queue data structure with low worst case time bounds. It matches the amortized time bounds of the Fibonacci heap in the worst case. To achieve these time bounds, strict Fibonacci heaps maintain several invariants by performing restoring transformations after every operation.

  8. Binomial heap - Wikipedia

    en.wikipedia.org/wiki/Binomial_heap

    heap.addTree(tree) heap.next(); p.next(); q.next() Because each binomial tree in a binomial heap corresponds to a bit in the binary representation of its size, there is an analogy between the merging of two heaps and the binary addition of the sizes of the two heaps, from right-to-left. Whenever a carry occurs during addition, this corresponds ...

  9. d-ary heap - Wikipedia

    en.wikipedia.org/wiki/D-ary_heap

    The d-ary heap or d-heap is a priority queue data structure, a generalization of the binary heap in which the nodes have d children instead of 2. [1] [2] [3] Thus, a binary heap is a 2-heap, and a ternary heap is a 3-heap. According to Tarjan [2] and Jensen et al., [4] d-ary heaps were invented by Donald B. Johnson in 1975. [1]