Search results
Results from the WOW.Com Content Network
Fermions have half-integer spin; for all known elementary fermions this is 1 / 2 . All known fermions except neutrinos, are also Dirac fermions; that is, each known fermion has its own distinct antiparticle. It is not known whether the neutrino is a Dirac fermion or a Majorana fermion. [4] Fermions are the basic building blocks of all ...
String theory is a model of physics whereby all "particles" that make up matter are composed of strings (measuring at the Planck length) that exist in an 11-dimensional (according to M-theory, the leading version) or 12-dimensional (according to F-theory [17]) universe. These strings vibrate at different frequencies that determine mass ...
The two parties had assigned the discovered meson two different symbols, J and ψ; thus, it became formally known as the J/ψ meson. The discovery finally convinced the physics community of the quark model's validity. [35] In the following years a number of suggestions appeared for extending the quark model to six quarks.
The subatomic particles considered important in the understanding of chemistry are the electron, the proton, and the neutron. Nuclear physics deals with how protons and neutrons arrange themselves in nuclei. The study of subatomic particles, atoms and molecules, and their structure and interactions, requires quantum mechanics.
The best known baryons are protons and neutrons, which make up most of the mass of the visible matter in the universe, whereas electrons, the other major component of atoms, are leptons. Each baryon has a corresponding antiparticle , known as an antibaryon, in which quarks are replaced by their corresponding antiquarks.
The discovery of these particles required very different experimental methods from that of their ordinary matter counterparts, and provided evidence that all particles had antiparticles—an idea that is fundamental to quantum field theory, the modern mathematical framework for particle physics. In the case of most subsequent particle ...
The particles are held very close to each other. Amorphous solid: A solid in which there is no far-range order of the positions of the atoms. Crystalline solid: A solid in which atoms, molecules, or ions are packed in regular order. Quasicrystal: A solid in which the positions of the atoms have long-range order, but this is not in a repeating ...
Because of momentum conservation laws, the creation of a pair of fermions (matter particles) out of a single photon cannot occur. However, matter creation is allowed by these laws when in the presence of another particle (another boson, or even a fermion) which can share the primary photon's momentum. Thus, matter can be created out of two photons.